We present VILLA, the first known effort on large-scale adversarial training for vision-and-language (V+L) representation learning. VILLA consists of two training stages: (i) task-agnostic adversarial pre-training; followed by (ii) task-specific adversarial finetuning. Instead of adding adversarial perturbations on image pixels and textual tokens, we propose to perform adversarial training in the embedding space of each modality. To enable large-scale training, we adopt the "free" adversarial training strategy, and combine it with KL-divergence-based regularization to promote higher invariance in the embedding space. We apply VILLA to current best-performing V+L models, and achieve new state of the art on a wide range of tasks, including Visual Question Answering, Visual Commonsense Reasoning, Image-Text Retrieval, Referring Expression Comprehension, Visual Entailment, and NLVR2.


翻译:我们提出VILLA,这是关于视觉和语言(V+L)代表性学习的大规模对抗性培训的首个已知努力。VILLA由两个培训阶段组成:(一) 任务不可知性对抗性对抗性训练前训练;随后是任务特定对抗性微调。我们提议在每种模式的嵌入空间中进行对抗性训练,而不是在图像像素和文字符号上增加对抗性干扰。为了进行大规模训练,我们采用了“免费”对抗性训练战略,并将它与KL-Divegence-规范化结合起来,以促进在嵌入空间中出现更高的差异。我们将VILA应用到目前最优秀的V+L模型,并在广泛的任务中实现新的艺术状态,包括视觉问答、视觉常识、图像-图象检索、参考表达组合、视觉成像和NLVR2。

7
下载
关闭预览

相关内容

表示学习是通过利用训练数据来学习得到向量表示,这可以克服人工方法的局限性。 表示学习通常可分为两大类,无监督和有监督表示学习。大多数无监督表示学习方法利用自动编码器(如去噪自动编码器和稀疏自动编码器等)中的隐变量作为表示。 目前出现的变分自动编码器能够更好的容忍噪声和异常值。 然而,推断给定数据的潜在结构几乎是不可能的。 目前有一些近似推断的策略。 此外,一些无监督表示学习方法旨在近似某种特定的相似性度量。提出了一种无监督的相似性保持表示学习框架,该框架使用矩阵分解来保持成对的DTW相似性。 通过学习保持DTW的shaplets,即在转换后的空间中的欧式距离近似原始数据的真实DTW距离。有监督表示学习方法可以利用数据的标签信息,更好地捕获数据的语义结构。 孪生网络和三元组网络是目前两种比较流行的模型,它们的目标是最大化类别之间的距离并最小化了类别内部的距离。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
53+阅读 · 2019年12月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
3+阅读 · 2018年3月21日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
53+阅读 · 2019年12月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员