We propose a new auto-regressive model for the statistical analysis of multivariate distributional time series. The data of interest consist of a collection of multiple series of probability measures supported over a bounded interval of the real line, and that are indexed by distinct time instants. The probability measures are modelled as random objects in the Wasserstein space. We establish the auto-regressive model in the tangent space at the Lebesgue measure by first centering all the raw measures so that their Fr\'echet means turn to be the Lebesgue measure. Using the theory of iterated random function systems, results on the existence, uniqueness and stationarity of the solution of such a model are provided. We also propose a consistent estimator for the model coefficient. In addition to the analysis of simulated data, the proposed model is illustrated with two real data sets made of observations from age distribution in different countries and bike sharing network in Paris. Finally, due to the positive and boundedness constraints that we impose on the model coefficients, the proposed estimator that is learned under these constraints, naturally has a sparse structure. The sparsity allows furthermore the application of the proposed model in learning a graph of temporal dependency from the multivariate distributional time series.
翻译:我们为多变量分布时间序列的统计分析提出了一个新的自动递减模型。 感兴趣的数据包括一系列多系列的概率计量方法的收集,这些概率计量方法支持于实际线的交错间隔,并用不同的时间瞬间进行索引。 概率计量方法以瓦塞尔斯坦空间的随机物体为模型。 我们在莱贝斯格测量的正向空间中建立了自动递减模型, 首先将所有原始测量方法集中起来, 从而使其Fr\' echet 意味着转换为 Lebesgue 测量方法。 利用迭代随机功能系统理论, 提供了这种模型解决方案的存在、 独特性和稳定性的结果。 我们还为模型系数提出了一个一致的估测符。 除了分析模拟数据外, 拟议的模型还用两种真实的数据集进行演示, 从不同国家的年龄分布和巴黎的自行车共享网络进行观察。 最后, 由于我们对模型系数施加了积极和约束, 拟议的估测仪是在这些制约下学习的, 自然从模型中学习到一个稀疏的时空结构。 该模型还允许在学习多时间分布序列中应用拟议的数字。 。