As a special infinite-order vector autoregressive (VAR) model, the vector autoregressive moving average (VARMA) model can capture much richer temporal patterns than the widely used finite-order VAR model. However, its practicality has long been hindered by its non-identifiability, computational intractability, and relative difficulty of interpretation. This paper introduces a novel infinite-order VAR model that not only avoids the drawbacks of the VARMA model but inherits its favorable temporal patterns. As another attractive feature, the temporal and cross-sectional dependence structures of this model can be interpreted separately, since they are characterized by different sets of parameters. For high-dimensional time series, this separation motivates us to impose sparsity on the parameters determining the cross-sectional dependence. As a result, greater statistical efficiency and interpretability can be achieved without sacrificing any temporal information. We introduce an $\ell_1$-regularized estimator for the proposed model and derive the corresponding non-asymptotic error bounds. An efficient block coordinate descent algorithm and a consistent model order selection method are developed. The merit of the proposed approach is supported by simulation studies and a real-world macroeconomic data analysis.
翻译:作为一种特殊的无限级矢量自动递减模式,矢量自动递减平均(VARMA)模型可以捕捉比广泛使用的有限级VAR模型更丰富的时间模式。然而,其实用性长期以来一直受到其不可识别性、可计算性以及相对解释困难的阻碍。本文介绍了一个新的无限级VAR模型,它不仅避免了VARMA模型的缺点,而且继承了其有利的时间模式。作为另一个有吸引力的特点,该模型的时间和跨部门依赖性结构可以分别解释,因为它们具有不同参数的特征。对于高维度时间序列来说,这种分离促使我们在决定跨部门依赖性的参数上施加宽度。因此,在不牺牲任何时间信息的情况下,可以实现更高的统计效率和可解释性。我们为拟议的模型引入一个$\ell_1美元固定的估算值,并得出相应的非被动误差界限。高效的区块协调下位算法和一致的模型顺序选择方法具有不同特征。对于高维度的时间序列序列,这种分离激励我们给决定跨部门依赖性的参数施加宽度。因此,在不牺牲任何时间信息的情况下,可以实现更高的统计效率和解释。我们提出的宏观经济世界性分析的优点。我们所拟进行了一种宏观经济分析。