We consider \emph{weighted group search on a disk}, which is a search-type problem involving 2 mobile agents with unit-speed. The two agents start collocated and their goal is to reach a (hidden) target at an unknown location and a known distance of exactly 1 (i.e., the search domain is the unit disk). The agents operate in the so-called \emph{wireless} model that allows them instantaneous knowledge of each others findings. The termination cost of agents' trajectories is the worst-case \emph{arithmetic weighted average}, which we quantify by parameter $w$, of the times it takes each agent to reach the target, hence the name of the problem. Our work follows a long line of research in search and evacuation, but quite importantly it is a variation and extension of two well-studied problems, respectively. The known variant is the one in which the search domain is the line, and for which an optimal solution is known. Our problem is also the extension of the so-called \emph{priority evacuation}, which we obtain by setting the weight parameter $w$ to $0$. For the latter problem the best upper/lower bound gap known is significant. Our contributions for weighted group search on a disk are threefold. \textit{First}, we derive upper bounds for the entire spectrum of weighted averages $w$. Our algorithms are obtained as a adaptations of known techniques, however the analysis is much more technical. \textit{Second}, our main contribution is the derivation of lower bounds for all weighted averages. This follows from a \emph{novel framework} for proving lower bounds for combinatorial search problems based on linear programming and inspired by metric embedding relaxations. \textit{Third}, we apply our framework to the priority evacuation problem, improving the previously best lower bound known from $4.38962$ to $4.56798$, thus reducing the upper/lower bound gap from $0.42892$ to $0.25056$.
翻译:暂无翻译