We consider \emph{weighted group search on a disk}, which is a search-type problem involving 2 mobile agents with unit-speed. The two agents start collocated and their goal is to reach a (hidden) target at an unknown location and a known distance of exactly 1 (i.e., the search domain is the unit disk). The agents operate in the so-called \emph{wireless} model that allows them instantaneous knowledge of each others findings. The termination cost of agents' trajectories is the worst-case \emph{arithmetic weighted average}, which we quantify by parameter $w$, of the times it takes each agent to reach the target, hence the name of the problem. Our work follows a long line of research in search and evacuation, but quite importantly it is a variation and extension of two well-studied problems, respectively. The known variant is the one in which the search domain is the line, and for which an optimal solution is known. Our problem is also the extension of the so-called \emph{priority evacuation}, which we obtain by setting the weight parameter $w$ to $0$. For the latter problem the best upper/lower bound gap known is significant. Our contributions for weighted group search on a disk are threefold. \textit{First}, we derive upper bounds for the entire spectrum of weighted averages $w$. Our algorithms are obtained as a adaptations of known techniques, however the analysis is much more technical. \textit{Second}, our main contribution is the derivation of lower bounds for all weighted averages. This follows from a \emph{novel framework} for proving lower bounds for combinatorial search problems based on linear programming and inspired by metric embedding relaxations. \textit{Third}, we apply our framework to the priority evacuation problem, improving the previously best lower bound known from $4.38962$ to $4.56798$, thus reducing the upper/lower bound gap from $0.42892$ to $0.25056$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员