In meta-learning, the knowledge learned from previous tasks is transferred to new ones, but this transfer only works if tasks are related. Sharing information between unrelated tasks might hurt performance, and it is unclear how to transfer knowledge across tasks with a hierarchical structure. Our research extends a model agnostic meta-learning model, MAML, by exploiting hierarchical task relationships. Our algorithm, TreeMAML, adapts the model to each task with a few gradient steps, but the adaptation follows the hierarchical tree structure: in each step, gradients are pooled across tasks clusters, and subsequent steps follow down the tree. We also implement a clustering algorithm that generates the tasks tree without previous knowledge of the task structure, allowing us to make use of implicit relationships between the tasks. We show that the new algorithm, which we term TreeMAML, performs better than MAML when the task structure is hierarchical for synthetic experiments. To study the performance of the method in real-world data, we apply this method to Natural Language Understanding, we use our algorithm to finetune Language Models taking advantage of the language phylogenetic tree. We show that TreeMAML improves the state of the art results for cross-lingual Natural Language Inference. This result is useful, since most languages in the world are under-resourced and the improvement on cross-lingual transfer allows the internationalization of NLP models. This results open the window to use this algorithm in other real-world hierarchical datasets.
翻译:在元化学习中,从以往任务中学到的知识被转移到新的任务,但只有在任务相关的情况下,这种转移才有效。 在不相关任务之间分享信息可能会损害业绩, 并且不清楚如何通过等级结构在任务之间转让知识。 我们的研究扩展了一个模型不可知的元学习模型, MAML, 利用等级任务关系。 我们的算法, 树马勒, 将模型与每个任务相适应, 使用几个梯级步骤, 但适应则遵循树级结构: 每一步, 梯级将任务组集合在一起, 并且随后各步在树下进行。 我们还实施了一个群集算法, 生成任务树枝树没有事先对任务结构的了解, 从而使我们能够利用任务结构之间的隐含关系。 我们显示, 当任务结构在合成实验时, 任务结构分级化时, 我们称为 TrinkMAMLML, 的新的算法比MAML要好。 我们用这个方法来研究实际方法的性, 我们用这个方法来理解自然语言理解, 我们用我们的算法来调整开放语言模式的窗口, 利用语言植物结构树。 我们显示TreMAML改进了艺术成果的状态, 在跨语言上, 语言上, 语言上, 语言上的最高级数据转换的结果是用于跨语言的 。