Graph coloring problems are arguably among the most fundamental graph problems in parallel and distributed computing with numerous applications. In particular, in recent years the classical ($\Delta+1$)-coloring problem became a benchmark problem to study the impact of local computation for parallel and distributed algorithms. In this work, we study the parallel complexity of a generalization of the ($\Delta+1$)-coloring problem: the problem of (degree+1)-list coloring (${\mathsf{D1LC}}$), where each node has an input palette of acceptable colors, of size one more than its degree, and the objective is to find a proper coloring using these palettes. In a recent work, Halld\'orsson et al. (STOC'22) presented a randomized $O(\log^3\log n)$-rounds distributed algorithm for ${\mathsf{D1LC}}$ in the ${\mathsf{LOCAL}}$ model, matching for the first time the state-of-the art complexity for $(\Delta+1)$-coloring due to Chang et al. (SICOMP'20). In this paper, we obtain a similar connection for $\mathsf{D1LC}$ in the Massively Parallel Computation (${\mathsf{MPC}}$) model with sublinear local space: we present a randomized $O(\log\log\log n)$-round ${\mathsf{MPC}}$ algorithm for ${\mathsf{D1LC}}$, matching the state-of-the art ${\mathsf{MPC}}$ algorithm for the $(\Delta+1)$-coloring problem. We also show that our algorithm can be efficiently derandomized.
翻译:图形颜色问题可能是在平行和分布式计算中的最根本的图形问题 。 特别是, 近年来古典 ($\ Delta+1$) 色彩问题成为研究本地计算平行和分布式算法影响的基准问题 。 在这项工作中, 我们研究了$\ Delta+1$) 颜色问题的一般化的平行复杂性 : (度+1) 列表颜色问题 ($mathfsf{D1LLQ}$), 每个节点都有可接受的颜色的输入调色板, 大小大于其程度, 目标是用这些调色板找到合适的颜色 。 在最近的一项工作中, Halld\\ orsson 等人( STOC' 22 ) 提出了一个随机化的$( log_ 3\ nlog) 美元分布式算法问题 : (度+1 D1 LC_ ffsf{LA} 模式中, 每个节点的调色色调调调调调调调 $- $Delta_ dalus_ dalma) 。