This paper presents the Residual QPAS Subspace method (ResQPASS) method that solves large-scale least-squares problem with bound constraints on the variables. The problem is solved by creating a series of small problems with increasing size by projecting on the basis residuals. Each projected problem is solved by the QPAS method that is warm-started with a working set and the solution of the previous problem. The method coincides with conjugate gradients (CG) applied to the normal equations when none of the constraints is active. When only a few constraints are active the method converges, after a few initial iterations, as the CG method. We develop a convergence theory that links the convergence with Krylov subspaces. We also present an efficient implementation where the matrix factorizations using QR are updated over the inner and outer iterations.
翻译:本文件介绍在变量受约束的情况下解决大型最小区域问题的剩余QPAS子空间方法(ResQPAS SubspaceS) 。 问题通过根据剩余物进行预测, 产生一系列规模越来越大的小问题来解决。 每个预测的问题都通过以工作集和前一个问题的解决办法热启动的QPAS方法来解决。 这种方法与在没有任何制约的情况下适用于正常方程式的共振梯度(CG) 相吻合。 当只有少数制约是主动的时, 方法会汇合为CG方法。 我们开发了一个将趋同点与 Krylov 子空间联系起来的趋同理论。 我们还展示了高效的实施, 使用 QR 的矩阵因子空间对内和外代号进行更新 。</s>