In this work we obtain results related to the approximation of $h$-dimensional dominant subspaces and low rank approximations of matrices $ A\in\mathbb K^{m\times n}$ (where $\mathbb K=\mathbb R$ or $\mathbb C)$ in case there is no singular gap at the index $h$, i.e. if $\sigma_h=\sigma_{h+1}$ (where $\sigma_1\geq \ldots\geq \sigma_p\geq 0$ denote the singular values of $ A$, and $p=\min\{m,n\}$). In order to do this, we develop a novel perspective for the convergence analysis of the classical deterministic block Krylov methods in this context. Indeed, starting with a matrix $ X\in\mathbb K^{n\times r}$ with $r\geq h$ satisfying a compatibility assumption with some $h$-dimensional right dominant subspace, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at $h$ (which is zero in this case) we exploit the nearest existing singular gaps.


翻译:本文討論了當並不存在奇異值在$h$處產生'隙縫',即$\sigma_h=\sigma_{h+1}$ (其中$\sigma_1\geq\ldots\geq\sigma_p\geq0$是矩陣$A\in\mathbb{K}^{m\times n}$ (其中$\mathbb{K}=\mathbb{R}$或$\mathbb{C}$)的奇異值,$p=\min\{m,n\}$)時,$h$維卓越子空間和矩陣的低秩逼近。為此,本文提出了一種新穎的視角,用於分析該上下文中的經典確定性分塊Krylov方法的收斂性。事實上,從一個滿足與某些$h$維右卓越子空間的兼容性假設的矩陣$X\in\mathbb{K}^{n\times r}$ (其中$r\geq h$)開始,我們展示了分塊Krylov方法對上述問題的逼近可以任意好。我們的方法基於Drineas, Ipsen, Kontopoulou和Magdon-Ismail對結構左卓越子空間逼近的最近工作。我們的工作與關於此主題的先前工作的主要區別在於我們利用最近的現有奇異隙縫,而不是利用在這種情況下為零的奇異隙縫。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员