Deep learning approaches require collection of data on many different input features or variables for accurate model training and prediction. Since data collection on input features could be costly, it is crucial to reduce the cost by selecting a subset of features and developing a budget-constrained model (BCM). In this paper, we introduce an approach to eliminating less important features for big data analysis using Deep Neural Networks (DNNs). Once a DNN model has been developed, we identify the weak links and weak neurons, and remove some input features to bring the model cost within a given budget. The experimental results show our approach is feasible and supports user selection of a suitable BCM within a given budget.
翻译:深层学习方法要求收集关于许多不同输入特征或变量的数据,以便准确进行模型培训和预测。由于收集投入特征的数据费用可能很高,因此关键是要通过选择一组特征和开发预算限制模式来降低成本。在本文件中,我们引入了一种方法,用深神经网络消除大数据分析中不太重要的特征。一旦开发出DNN模型,我们就会发现薄弱环节和弱神经元,并删除一些输入特征,以便将模型成本纳入特定预算。实验结果显示,我们的方法是可行的,并支持用户在特定预算范围内选择合适的BCM。