Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different inputs, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed systematically. Finally, we discuss the open problems in this field together with interesting future research directions.
翻译:动态神经网络是深层学习中的一个新兴研究课题。与在推论阶段固定计算图和参数的静态模型相比,动态网络可以调整其结构或参数以适应不同的投入,从而在准确性、计算效率、适应性等方面带来显著的优势。 在这次调查中,我们全面审查了这一迅速开发的领域,将动态网络分为三大类:(1) 将动态网络分为以数据为基础的结构或参数处理每个实例的实例式动态模型;(2) 对图像数据的不同空间位置进行适应性计算的空间智能动态网络;(3) 在视频和文本等相继数据的时间层面进行适应性推断的时向动态模型。系统地审查了动态网络的重要研究问题,例如结构设计、决策计划、优化技术和应用。最后,我们讨论了该领域的开放问题以及有趣的未来研究方向。