We say that $\Gamma$, the boundary of a bounded Lipschitz domain, is locally dilation invariant if, at each $x\in \Gamma$, $\Gamma$ is either locally $C^1$ or locally coincides (in some coordinate system centred at $x$) with a Lipschitz graph $\Gamma_x$ such that $\Gamma_x=\alpha_x\Gamma_x$, for some $\alpha_x\in (0,1)$. In this paper we study, for such $\Gamma$, the essential spectrum of $D_\Gamma$, the double-layer (or Neumann-Poincar\'e) operator of potential theory, on $L^2(\Gamma)$. We show, via localisation and Floquet-Bloch-type arguments, that this essential spectrum is the union of the spectra of related continuous families of operators $K_t$, for $t\in [-\pi,\pi]$; moreover, each $K_t$ is compact if $\Gamma$ is $C^1$ except at finitely many points. For the 2D case where, additionally, $\Gamma$ is piecewise analytic, we construct convergent sequences of approximations to the essential spectrum of $D_\Gamma$; each approximation is the union of the eigenvalues of finitely many finite matrices arising from Nystr\"om-method approximations to the operators $K_t$. Through error estimates with explicit constants, we also construct functionals that determine whether any particular locally-dilation-invariant piecewise-analytic $\Gamma$ satisfies the well-known spectral radius conjecture, that the essential spectral radius of $D_\Gamma$ on $L^2(\Gamma)$ is $<1/2$ for all Lipschitz $\Gamma$. We illustrate this theory with examples; for each we show that the essential spectral radius is $<1/2$, providing additional support for the conjecture. We also, via new results on the invariance of the essential spectral radius under locally-conformal $C^{1,\beta}$ diffeomorphisms, show that the spectral radius conjecture holds for all Lipschitz curvilinear polyhedra.
翻译:我们说, 对于有界Lipschitz域的边界$\Gamma$,如果在每个$x\in\Gamma$上,$\Gamma$要么局部是$C^1$,要么在以$x$为中心的某个坐标系下,局部与Lipschitz图$\Gamma_x$相同,并且$\Gamma_x=\alpha_x\Gamma_x$,其中$\alpha_x\in (0,1)$。在本文中,我们研究这样的$\Gamma$上潜在理论的双层(或诺依曼-泊松)算子$D_\Gamma$在$L^2(\Gamma)$上的本征频谱。我们通过定位和Floquet-Bloch类型的论证表明,这个本质频谱是相关连续算子$K_t$的谱的并集,其中$t\in[-\pi,\pi]$;此外,如果$\Gamma$除了有限个点外是$C^1$,那么每个$K_t$是紧缩的。对于二维情况,如果$\Gamma$是分段解析的,我们构造了逐渐逼近$D_\Gamma$本质频谱的收敛序列;每个逼近值是由Nyström方法逼近$K_t$算子所得到的有限矩阵的特征值之并。通过具体的误差估计,我们还构造了能够确定任何特定局部放缩不变、分段解析的$\Gamma$是否满足著名的谱半径猜想的泛函,即$D_{\Gamma}$在$L^2(\Gamma)$上的本质谱半径是否对于所有的Lipschitz $\Gamma$都小于$1/2$。我们通过例子说明了这个理论;对于每个例子的$\Gamma$,我们都表明其本质谱半径小于$1/2$,为猜想提供了额外的支持。通过新的结果关于在局部共形$C^{1,\beta}$微分同构变换下本质谱半径不变的证明,我们还表明,对于所有的Lipschitz 曲边多面体,谱半径猜想成立。