在图表示学习中,Graph Transformer通过位置编码对图结构信息进行编码,相比GNN,可以捕获长距离依赖,减轻过平滑现象。本文介绍Graph Transformer的两篇近期工作。

[ICML 2022] Structure-Aware Transformer for Graph Representation Learning

本文分析了Transformer的位置编码,认为使用位置编码的Transformer生成的节点表示不一定捕获它们之间的结构相似性。为了解决这个问题,提出了结构感知Transformer,通过设计新的自注意机制,使其能够捕获到结构信息。新的注意力机制通过在计算注意力得分之前,提取每个节点的子图表示,并将结构信息合并到原始的自注意机制中。本文提出了几种自动生成子图表示的方法,并从理论上表明,生成的表示至少与子图表示具有相同的表达能力。该方法在五个图预测基准上达到了最先进的性能,可以利用任何现有的GNN来提取子图表示。它系统地提高了相对于基本GNN模型的性能,成功地结合了GNN和Transformer。

方法

本文提出了一个将图结构编码到注意力机制中的模型。首先,通过Structure extractor抽取节点的子图结构,进行子图结构的注意力计算。其次,遵循Transformer的结构进行计算。

Structure-Aware Self-Attention

Transformer原始结构的注意力机制可以被重写为一个核平滑器: 其中, 是一个线性函数。 是 空间中,由 和 参数化的(非对称)指数核: 是定义在节点特征上的可训练指数核函数,这就带来了一个问题:当节点特征相似时,结构信息无法被识别并编码。为了同时考虑节点之间的结构相似性,我们考虑了一个更一般化的核函数,额外考虑了每个节点周围的局部子结构。通过引入以每个节点为中心的一组子图,定义结构感知注意力如下: 其中, 是节点 在图 中的子图,与节点特征 相关, 是可以是任意比较一对子图的核函数。该自注意函数不仅考虑了节点特征的相似度,而且考虑了子图之间的结构相似度。因此,它生成了比原始的自我关注更有表现力的节点表示。定义如下形式的: 其中 是一个结构提取器,它提取以 为中心、具有节点特征 的子图的向量表示。结构感知自我注意力十分灵活,可以与任何生成子图表示的模型结合,包括GNN和图核函数。在自注意计算中并不考虑边缘属性,而是将其合并到结构感知节点表示中。文章提出两种生成子图的方法:k-subtree GNN extractor 和 k-subgraph GNN extractor,并进行相关实验。

实验

下图是模型在图回归和图分类任务上的效果。 使用GNN抽取结构信息后,再用Transformer学习特征,由下图可以看出,Transformer可以增强GNN的性能。

[NIPS 2022] Recipe for a General, Powerful, Scalable Graph Transformer

本文首先总结了不同类型的编码,并对其进行了更清晰的定义,将其分为局部编码、全局编码和相对编码。其次,提出了模块化框架GraphGPS,支持多种类型的编码,在小图和大图中提供效率和可伸缩性。框架由位置/结构编码、局部消息传递机制、全局注意机制三个部分组成。该架构在所有基准测试中显示了极具竞争力的结果,展示了模块化和不同策略组合所获得的经验好处。

方法

在相关工作中,位置/结构编码是影响Graph Transformer性能的最重要因素之一。因此,更好地理解和组织位置/结构编码将有助于构建更加模块化的体系结构,并指导未来的研究。本文将位置/结构编码分成三类:局部编码、全局编码和相对编码。各类编码的含义和示例如下表所示。 现有的MPNN+Transformer混合模型往往是MPNN层和Transformer层逐层堆叠,由于MPNN固有结构带来的过平滑问题,导致这样的混合模型的性能也会受到影响。因此,本文提出新的混合架构,使MPNN和Transformer的计算相互独立,获得更好的性能。具体框架如图所示。

框架主要由位置/结构编码、局部消息传递机制(MPNN)、全局注意机制(Self Attention)三部分组成。根据不同的需求设计位置/结构编码,与输入特征相加,然后分别输入到MPNN和Transformer模型中进行训练,再对两个模型的结果相加,最后经过一个2层MLP将输出结果更好的融合,得到最终的输出。更新公式如下:

实验

在图级别的任务上,效果超越主流方法:

通过消融实验,研究框架中各个结构的作用,可以看到,MPNN和位置/结构编码模块对Transformer的效果均有提升作用。

总结

两篇文章都有一个共同特点,就是采用了GNN+Transformer混合的模型设计,结合二者的优势,以不同的方式对两种模型进行融合,GNN学习到图结构信息,然后在Transformer的计算中起到提供结构信息的作用。在未来的研究工作中,如何设计更加合理的模型,也是一个值得探讨的问题。 本期责任编辑:杨成本期编辑:刘佳玮

成为VIP会员查看完整内容
60

相关内容

【NeurIPS22】大图上线性复杂度的节点级Transformer
专知会员服务
19+阅读 · 2022年11月29日
图神经网络黑盒攻击近期进展
专知会员服务
18+阅读 · 2022年10月14日
【ICML2022】结构感知Transformer的图表示学习
专知会员服务
48+阅读 · 2022年6月17日
注意力图神经网络的多标签文本分类
专知会员服务
111+阅读 · 2020年3月28日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
58+阅读 · 2020年1月10日
从多篇顶会论文看图神经网络黑盒攻击近期进展
PaperWeekly
0+阅读 · 2022年10月19日
图神经网络黑盒攻击近期进展
专知
0+阅读 · 2022年10月14日
一文带你浏览Graph Transformers
图与推荐
1+阅读 · 2022年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
20+阅读 · 2019年9月7日
Arxiv
23+阅读 · 2018年10月24日
VIP会员
相关VIP内容
【NeurIPS22】大图上线性复杂度的节点级Transformer
专知会员服务
19+阅读 · 2022年11月29日
图神经网络黑盒攻击近期进展
专知会员服务
18+阅读 · 2022年10月14日
【ICML2022】结构感知Transformer的图表示学习
专知会员服务
48+阅读 · 2022年6月17日
注意力图神经网络的多标签文本分类
专知会员服务
111+阅读 · 2020年3月28日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
58+阅读 · 2020年1月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
20+阅读 · 2019年9月7日
Arxiv
23+阅读 · 2018年10月24日
微信扫码咨询专知VIP会员