The popularity of online fashion shopping continues to grow. The ability to offer an effective recommendation to customers is becoming increasingly important. In this work, we focus on Fashion Outfits Challenge, part of SIGIR 2022 Workshop on eCommerce. The challenge is centered around Fill in the Blank (FITB) task that implies predicting the missing outfit, given an incomplete outfit and a list of candidates. In this paper, we focus on applying siamese networks on the task. More specifically, we explore how combining information from multiple modalities (textual and visual modality) impacts the performance of the model on the task. We evaluate our model on the test split provided by the challenge organizers and the test split with gold assignments that we created during the development phase. We discover that using both visual, and visual and textual data demonstrates promising results on the task. We conclude by suggesting directions for further improvement of our method.
翻译:在线时装购物越来越受欢迎。 向客户提供有效建议的能力越来越重要。 在这项工作中,我们注重时装挑战,这是SIGIR 2022电子商务研讨会的一部分。 挑战围绕填补空白(FITB)任务,这意味着预测缺失的服装,因为服装和候选人名单不完整。 在这份文件中,我们注重在任务上应用分析网络。 更具体地说,我们探讨将多种模式(文字和视觉模式)的信息结合起来如何影响模型的性能。 我们评估了我们关于挑战组织者提供的测试分解模型和我们开发阶段创建的黄金任务测试分解模型。我们发现,使用视觉和视觉和文字数据显示任务有希望的结果。 我们最后提出进一步改进方法的方向。