The click behavior is the most widely-used user positive feedback in recommendation. However, simply considering each click equally in training may suffer from clickbaits and title-content mismatching, and thus fail to precisely capture users' real satisfaction on items. Dwell time could be viewed as a high-quality quantitative indicator of user preferences on each click, while existing recommendation models do not fully explore the modeling of dwell time. In this work, we focus on reweighting clicks with dwell time in recommendation. Precisely, we first define a new behavior named valid read, which helps to select high-quality click instances for different users and items via dwell time. Next, we propose a normalized dwell time function to reweight click signals in training, which could better guide our model to provide a high-quality and efficient reading. The Click reweighting model achieves significant improvements on both offline and online evaluations in a real-world system.
翻译:点击行为是建议中最广泛使用的用户积极反馈。 但是,只要在培训中平等地考虑每次点击,就会因点击和标题内容不匹配而受到影响,从而无法准确地捕捉到用户对项目的真正满意度。 时间可以被视为每个点击的用户偏好的一个高质量的量化指标, 而现有的建议模式并不完全探索居住时间的模型。 在这项工作中,我们侧重于用空闲时间对点击进行重新加权。 确切地说,我们首先定义了一种名为有效阅读的新行为,它有助于为不同用户和项目选择高质量的点击实例,通过时间间隔选择。 下一步,我们提出一个正常的居住时间功能,在培训中重新加权点击信号,这可以更好地指导我们的模型,提供高质量和高效的阅读。 点击再加权模式在现实世界系统中的离线和在线评价上都取得了显著的改进。