Object detection at night is a challenging problem due to the absence of night image annotations. Despite several domain adaptation methods, achieving high-precision results remains an issue. False-positive error propagation is still observed in methods using the well-established student-teacher framework, particularly for small-scale and low-light objects. This paper proposes a two-phase consistency unsupervised domain adaptation network, 2PCNet, to address these issues. The network employs high-confidence bounding-box predictions from the teacher in the first phase and appends them to the student's region proposals for the teacher to re-evaluate in the second phase, resulting in a combination of high and low confidence pseudo-labels. The night images and pseudo-labels are scaled-down before being used as input to the student, providing stronger small-scale pseudo-labels. To address errors that arise from low-light regions and other night-related attributes in images, we propose a night-specific augmentation pipeline called NightAug. This pipeline involves applying random augmentations, such as glare, blur, and noise, to daytime images. Experiments on publicly available datasets demonstrate that our method achieves superior results to state-of-the-art methods by 20\%, and to supervised models trained directly on the target data.


翻译:---- 物体检测在夜间是一个具有挑战性的问题,因为缺乏夜间图像的注释。尽管存在几种领域自适应的方法,但仍然存在高精度结果的问题。使用已建立的师生框架,特别是对于小规模和低光对象,仍然观察到误报错误的传播。本文提出了一个分为两个阶段的一致性无监督领域自适应网络2PCNet,以解决这些问题。网络在第一阶段使用来自教师的高置信度边界框预测,并将它们附加到教师重新评估的存储区域提议中,从而产生高置信度伪标签和低置信度伪标签的组合。夜间图像和伪标签在用作学生输入之前被缩小,从而提供更强的小规模伪标签。为了解决由于低光区域和其他夜间属性在图像中引起的错误,我们提出了一个称为NightAug的针对夜间的特定增强管道。该管道涉及将随机增强,如耀斑、模糊和噪声应用于日间图像。在公开可用的数据集上进行的实验表明,我们的方法比最先进的方法和直接在目标数据上训练的监督模型取得了优异的结果,精度提高了20\%。

1
下载
关闭预览

相关内容

领域自适应是与机器学习和转移学习相关的领域。 当我们的目标是从源数据分布中学习在不同(但相关)的目标数据分布上的良好性能模型时,就会出现这种情况。 例如,常见垃圾邮件过滤问题的任务之一在于使模型从一个用户(源分发)适应到接收显着不同的电子邮件(目标分发)的新模型。 注意,当有多个源分发可用时,该问题被称为多源域自适应。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
21+阅读 · 2021年5月1日
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
55+阅读 · 2020年2月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2020年10月11日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员