A map graph is a graph admitting a representation in which vertices are nations on a spherical map and edges are shared curve segments or points between nations. We present an explicit fixed-parameter tractable algorithm for recognizing map graphs parameterized by treewidth. The algorithm has time complexity that is linear in the size of the graph and, if the input is a yes-instance, it reports a certificate in the form of a so-called witness. Furthermore, this result is developed within a more general algorithmic framework that allows to test, for any $k$, if the input graph admits a $k$-map (where at most $k$ nations meet at a common point) or a hole-free~$k$-map (where each point of the sphere is covered by at least one nation). We point out that, although bounding the treewidth of the input graph also bounds the size of its largest clique, the latter alone does not seem to be a strong enough structural limitation to obtain an efficient time complexity. In fact, while the largest clique in a $k$-map graph is $\lfloor 3k/2 \rfloor$, the recognition of $k$-map graphs is still open for any fixed $k \ge 5$.
翻译:地图图是一个图表, 表明在球形地图上脊椎是国家, 边缘是国家之间共同的曲线段或点。 我们提出了一个清晰的固定参数可移动算法, 以识别以树状线度为参数的地图图。 算法具有时间复杂性, 它在图形大小上是线性的, 如果输入是肯定的, 它则以所谓的证人的形式报告一个证书。 此外, 这个结果是在更一般的算法框架内开发的, 它允许测试任何美元( 如果输入图包含一美元( 大部分美元国家在一个共同点相会) 或无洞的 $- k$- map( 每个球点至少有一个国家覆盖了这个球点) 。 我们指出, 虽然输入图的树边也约束着其最大球形的大小, 仅后者似乎不足以测试任何有效的时间复杂性。 事实上, $- k$ 美元的最大千美元平面图是5k\ 美元平面图的固定识别值 。