We study the weighted $k$-Set Packing problem: Given a collection $S$ of sets, each of cardinality at most $k$, together with a positive weight function $w:\mathcal{S}\rightarrow\mathbb{Q}_{>0}$, the task is to compute a disjoint sub-collection $A\subseteq \mathcal{S}$ of maximum total weight. For $k\leq 2$, the weighted $k$-Set Packing problem can be solved in polynomial time, but for $k\geq 3$, it becomes $NP$-hard. Recently, Neuwohner has shown how to obtain approximation guarantees of $\frac{k+\epsilon_k}{2}$ with $\lim_{k\rightarrow\infty}\epsilon_k=0$. She further showed her result to be asymptotically best possible in that no algorithm considering local improvements of logarithmically bounded size with respect to some fixed power of the weight function can yield an approximation guarantee better than $\frac{k}{2}$. In this paper, we finally show how to beat the threshold of $\frac{k}{2}$ for the weighted $k$-Set Packing problem by $\Omega(k)$. We achieve this by combining local search with the application of a black box algorithm for the unweighted $k$-Set Packing problem to carefully chosen sub-instances. In doing so, we manage to link the approximation ratio for general weights to the one achievable in the unweighted case and we obtain guarantees of at most $\frac{k+1}{2}-2\cdot 10^{-4}$ for all $k\geq 4$.
翻译:我们研究的加权美元包包问题:如果收集了2S美元,那么每个最主要部分的重量值最多为3美元,加上正重函数$w:\mathcal{S\rightr\mathb}0美元,我们的任务是用最大重量的美元来计算一个脱节子收集 $A\subseteq \mathcal{S}2美元。对于$kleq 2美元,加权的美元包包问题可以在多式时间解决,但对于$k\ge3美元来说,它变成了$NP$-hard。最近,Newohner已经展示了如何用$\k\k\k\kright\ klock_k}美元获得近似保证 $\krightright\inftylepsilon_k=0美元。对于美元来说, 她进一步展示了她的结果是最好的。 对于本地的算法来说,考虑到对数的改进,对于某些固定的重量值,我们所选定的大小,它就会变成美元最接近的值的值的值值 $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx