We propose a robust and accurate method for estimating the 3D poses of two hands in close interaction from a single color image. This is a very challenging problem, as large occlusions and many confusions between the joints may happen. State-of-the-art methods solve this problem by regressing a heatmap for each joint, which requires solving two problems simultaneously: localizing the joints and recognizing them. In this work, we propose to separate these tasks by relying on a CNN to first localize joints as 2D keypoints, and on self-attention between the CNN features at these keypoints to associate them with the corresponding hand joint. The resulting architecture, which we call "Keypoint Transformer", is highly efficient as it achieves state-of-the-art performance with roughly half the number of model parameters on the InterHand2.6M dataset. We also show it can be easily extended to estimate the 3D pose of an object manipulated by one or two hands with high performance. Moreover, we created a new dataset of more than 75,000 images of two hands manipulating an object fully annotated in 3D and will make it publicly available.


翻译:我们提出一个可靠和准确的方法来从单一颜色图像中密切互动来估计两只手的三维成份。 这是一个非常棘手的问题,因为可能发生大型隔热和关节之间的许多混乱。 最先进的方法通过向每个联合的回退热映射来解决这个问题, 这需要同时解决两个问题: 将连接定位并承认它们。 在这项工作中, 我们提议将这些任务分开, 依靠CNN将第一个连接定位为 2D 关键点, 以及在这些关键点的CNN 功能之间自我注意, 将它们与相应的手接头。 由此产生的结构( 我们称之为“ Keypoint 变换器 ” ) 效率很高, 因为它能达到最先进的性能, 大约是 InterHand2.6M 数据集的模型参数数的一半。 我们还表明, 可以轻易地扩大这些任务的范围, 来估计由一手或两只手操纵的物体的3D 组合为 2D 关键点, 。 此外, 我们创造了一个新的数据集, 超过 75,000 5 000 张两只手完全操纵3D 中附加说明的物体的图像, 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
124+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员