We target time-dependent partial differential equations (PDEs) with coefficients that are arbitrarily rough in both space and time. To tackle these problems, we construct reduced basis/ multiscale ansatz functions defined in space that can be combined with time stepping schemes within model order reduction or multiscale methods. To that end, we propose to perform several simulations of the PDE for few time steps in parallel starting at different, randomly drawn start points, prescribing random initial conditions; applying a singular value decomposition to a subset of the so obtained snapshots yields the reduced basis/ multiscale ansatz functions. This facilitates constructing the reduced basis/ multiscale ansatz functions in an embarrassingly parallel manner. In detail, we suggest using a data-dependent probability distribution based on the data functions of the PDE to select the start points. Each local in time simulation of the PDE with random initial conditions approximates a local approximation space in one time point that is optimal in the sense of Kolmogorov. The derivation of these optimal local approximation spaces which are spanned by the left singular vectors of a compact transfer operator that maps arbitrary initial conditions to the solution of the PDE in a later point of time, is one other main contribution of this paper. By solving the PDE locally in time with random initial conditions, we construct local ansatz spaces in time that converge provably at a quasi-optimal rate and allow for local error control. Numerical experiments demonstrate that the proposed method can outperform existing methods like the proper orthogonal decomposition even in a sequential setting.
翻译:为了解决这些问题,我们以空间和时间上任意粗糙的系数针对基于时间的局部偏差方程式(PDEs)。为了解决这些问题,我们构建了在空间中界定的、可与时间踏脚计划相结合的减少基数/多尺度 ansatz 功能,这些功能可以与模型顺序缩减或多尺度方法中的时间踏脚计划相结合。为此,我们提议从不同随机抽取的起始点开始,对PDE同时进行若干时间步骤的模拟,同时进行随机初步条件的模拟,在一个时间点以当地近距离空间为准,在科尔莫多洛夫意义上最理想的时间点,这些最佳地方接近空间的衍生可以产生一个更晚的基数/多尺度 ansatz 函数。这有利于以令人尴尬的平行方式构建减少的基础/多尺度 ansatz 函数。我们建议使用基于PDEDO的数据函数的根据数据偏差概率分布方法来选择起始点点。我们建议,每个时间模拟PDECE,在一个时间点上最理想的地方近距离空间。这些最佳地方接近空间空间的推算出一个较晚由某个压缩转移的左端矢控控控控控点,甚至一个类似控控控点,这个时间点的运行点,然后绘制一个任意的直线操作点的直径点的直线误算的直线路路路路路段路路路路路路路段,我们方路路路路路路路路路路路路路路段,在初步路路路路路路路路路路路路路路路路路路路段,我们标路路路路路段,在确定当前路段路段路段,在本地平路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路段,在确定本地路路路路路路路路路路路路路路路路路路段,以路段,在确定本地路路路路路路路路路路路路路路路路路段路路路路路路段,我们路段路段路段,以路路段路段路段路段路段路段路段路段路段路段路路段路段路段路段路