This work addresses the problem of simulating Gaussian random fields that are continuously indexed over a class of metric graphs, termed graphs with Euclidean edges, being more general and flexible than linear networks. We introduce three general algorithms that allow to reconstruct a wide spectrum of random fields having a covariance function that depends on a specific metric, called resistance metric, and proposed in recent literature. The algorithms are applied to a synthetic case study consisting of a street network. They prove to be fast and accurate in that they reproduce the target covariance function and provide random fields whose finite-dimensional distributions are approximately Gaussian.
翻译:暂无翻译