We present SeRP, a framework for Self-Supervised Learning of 3D point clouds. SeRP consists of encoder-decoder architecture that takes perturbed or corrupted point clouds as inputs and aims to reconstruct the original point cloud without corruption. The encoder learns the high-level latent representations of the points clouds in a low-dimensional subspace and recovers the original structure. In this work, we have used Transformers and PointNet-based Autoencoders. The proposed framework also addresses some of the limitations of Transformers-based Masked Autoencoders which are prone to leakage of location information and uneven information density. We trained our models on the complete ShapeNet dataset and evaluated them on ModelNet40 as a downstream classification task. We have shown that the pretrained models achieved 0.5-1% higher classification accuracies than the networks trained from scratch. Furthermore, we also proposed VASP: Vector-Quantized Autoencoder for Self-supervised Representation Learning for Point Clouds that employs Vector-Quantization for discrete representation learning for Transformer-based autoencoders.


翻译:我们介绍了三维点云自我强化学习框架SERP。 SERP 包含以扰动或腐蚀点云作为投入的编码器解码器结构,目的是重建原始点云,而不会出现腐败。编码器学习低维子空间中点云的高潜层图,并恢复原始结构。在这项工作中,我们使用了变压器和基于点网的自动编码器。拟议框架还解决了基于变压器的蒙面自动编码器的某些局限性,这些变压器容易泄漏位置信息,信息密度不均。我们用完整的 ShapeNet 数据集对模型进行了培训,并将模型40 评估作为下游分类任务。我们已经表明,预培训模型的分类值比从零到零的网络高出了0.5-1个百分点。此外,我们还提议了VASP: 矢量自动自动编码,用于对点云进行自我控制的代表学习,该点云使用矢量-量定量,用于为基于变压的自动编码进行独立代表学习。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2021年7月7日
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关VIP内容
专知会员服务
35+阅读 · 2021年7月7日
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员