项目名称: 空间外差干涉光谱仪定标原理及实验研究

项目编号: No.41301373

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 天文学、地球科学

项目作者: 施海亮

作者单位: 中国科学院合肥物质科学研究院

项目金额: 25万元

中文摘要: 空间外差光谱技术为新型高光谱分光形式,综合了干涉调制与光栅衍射于一体,可以在基频附近的较窄波段范围内获取极高光谱分辨率。由于空间外差光谱仪获取的原始数据为干涉图,并非与入射光直接对应的光谱信息,采用面阵探测器采集,每一探测元输出的干涉信号强度与落在其上的混合光谱及探测器自身光谱响应有关,且仪器的光谱特性与干涉仪中光栅等器件参数相关。因此,传统高光谱仪器的定标原理和方法不能直接移植应用。此外,干涉域到频谱域的转换过程亦会影响到定标精度。 本项目依据仪器的分光机理,探讨空间外差干涉型光谱仪的光谱及辐射定标原理。通过搭建可调波长均匀单色面光源定标装置并开展高光谱扫描定标实验,获取入射光波数与干涉频率函数关系、干涉最大光程差以及逐像元的光谱响应曲线,最终得到各光谱通道中心波长、光谱辐射响应度等定标系数,并采用气体吸收池及室外地基探测实验对其验证,为空间外差光谱仪遥感数据高精度定量化奠定基础。

中文关键词: 空间外差光谱技术;光谱定标;辐射定标;定标精度;干涉数据

英文摘要: Spatial heterodyne spectroscopy as a novel hyper-spectral spectroscopic technology,integrated interference modulation and grating diffraction, can achieve extremely high spectral resolution within a narrow spectral band near the Littrow frequency.The raw data acquired by the plane array detector is interferogram but not the directly spectral information corresponding with the incident light.The mixed spectrum falling on the detector and the spectra response itself determine the output interference signal intensity of each pixel.The spectral characteristics of the instrument is related with the optics elements parameters,such as the grating.So the existed calibration principles and methods can not be directly applied to spatial heterodyne spectrometer. In addition,the transform process of interference domain to the spectral domain will also affect the accuracy of the calibration. According to the principle of spectroscopic mechanism,the project resarch on the spectral and radiometric calibration theory of spatial interference instrument .Through setting up the uniform source calibration system with tunable wavelength and high spectral scanning calibration experiment,we can obtain the function between wave number of the incident light and interference frequency ,the maximum optical path difference and the spectra

英文关键词: spatial heterodyne spectroscopy;spectral calibration;radiometric calibration;calibration precision;interferometric data

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
13+阅读 · 2021年9月23日
专知会员服务
31+阅读 · 2021年7月26日
基于多头注意力胶囊网络的文本分类模型
专知会员服务
77+阅读 · 2020年5月24日
最详细、最完整的相机标定讲解
计算机视觉life
55+阅读 · 2019年11月24日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
实战 | 相机标定
计算机视觉life
15+阅读 · 2019年1月15日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关主题
相关资讯
最详细、最完整的相机标定讲解
计算机视觉life
55+阅读 · 2019年11月24日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
实战 | 相机标定
计算机视觉life
15+阅读 · 2019年1月15日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员