Spatio-temporal representation learning is critical for video self-supervised representation. Recent approaches mainly use contrastive learning and pretext tasks. However, these approaches learn representation by discriminating sampled instances via feature similarity in the latent space while ignoring the intermediate state of the learned representations, which limits the overall performance. In this work, taking into account the degree of similarity of sampled instances as the intermediate state, we propose a novel pretext task - spatio-temporal overlap rate (STOR) prediction. It stems from the observation that humans are capable of discriminating the overlap rates of videos in space and time. This task encourages the model to discriminate the STOR of two generated samples to learn the representations. Moreover, we employ a joint optimization combining pretext tasks with contrastive learning to further enhance the spatio-temporal representation learning. We also study the mutual influence of each component in the proposed scheme. Extensive experiments demonstrate that our proposed STOR task can favor both contrastive learning and pretext tasks. The joint optimization scheme can significantly improve the spatio-temporal representation in video understanding. The code is available at https://github.com/Katou2/CSTP.
翻译:Spatio-时间代表制学习对于视频自我监督的代表制至关重要。最近的方法主要使用对比性学习和托辞任务。但是,这些方法通过通过潜在空间的特征相似性来区分抽样实例,而通过区分抽样实例来了解代表性,而忽略了所学代表制的中间状态,从而限制了总体绩效。在这项工作中,考虑到抽样实例与中间状态相似的程度,我们提议了一项新颖的托辞任务----时空重叠率(STOR)预测。它源于关于人类能够区分空间和时间视频重叠率的观察。这项任务鼓励模式对两个生成样本的样本的Stor进行歧视,以了解代表性。此外,我们采用联合优化,将托辞任务与对比性学习结合起来,以进一步增强对时空代表制的学习。我们还研究了拟议方案中每个组成部分的相互影响。广泛的实验表明,我们提议的托拉尔任务既有利于对比性学习,又有利于托辞任务。联合优化计划可以大大改进视频理解中的口对口/时间代表制。代码可在 https://gius/Katoub2/Kcommalde.