Remote sensing (RS) images are usually stored in compressed format to reduce the storage size of the archives. Thus, existing content-based image retrieval (CBIR) systems in RS require decoding images before applying CBIR (which is computationally demanding in the case of large-scale CBIR problems). To address this problem, in this paper, we present a joint framework that simultaneously learns RS image compression and indexing, eliminating the need for decoding RS images before applying CBIR. The proposed framework is made up of two modules. The first module aims at effectively compressing RS images. It is achieved based on an auto-encoder architecture. The second module aims at producing hash codes with a high discrimination capability. It is achieved based on a deep hashing method that exploits soft pairwise, bit-balancing and classification loss functions. We also propose a two stage learning strategy with gradient manipulation techniques to obtain image representations that are compatible with both RS image indexing and compression. Experimental results show the compression and CBIR efficacy of the proposed framework when compared to widely used approaches in RS. The code of the proposed framework is available at https://git.tu-berlin.de/rsim/RS-JCIF.


翻译:遥感(RS)图像通常以压缩格式存储,以减少档案的储存规模。因此,在应用CBIR(对于大规模CBIR问题,计算要求很高)之前,RSS现有的基于内容的图像检索(CBIR)系统需要解码图像(CBIR)系统。为了解决这个问题,我们在本文件中提出了一个联合框架,同时学习RSS图像压缩和索引,在应用CBIR之前不必解码RS图像。拟议框架由两个模块组成。第一个模块旨在有效地压缩RS图像。它以自动编码结构为基础实现。第二个模块旨在生成具有高度歧视能力的散装代码。它是在利用软对对对、位平衡和分类损失功能的深度散射方法的基础上实现的。我们还提出了一个两个阶段学习战略,即采用梯度操纵技术,以获得与RS图像索引和压缩兼容的图像显示。实验结果显示,与RS广泛使用的方法相比,拟议框架的压缩和CBBIR的功效。拟议的框架的代码可在 https://gimber/Jimt.tu中查阅。

0
下载
关闭预览

相关内容

《5G+智慧农业解决方案》22页PPT,三昇农业
专知会员服务
52+阅读 · 2022年3月23日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员