The development of cross-modal retrieval systems that can search and retrieve semantically relevant data across different modalities based on a query in any modality has attracted great attention in remote sensing (RS). In this paper, we focus our attention on cross-modal text-image retrieval, where queries from one modality (e.g., text) can be matched to archive entries from another (e.g., image). Most of the existing cross-modal text-image retrieval systems in RS require a high number of labeled training samples and also do not allow fast and memory-efficient retrieval. These issues limit the applicability of the existing cross-modal retrieval systems for large-scale applications in RS. To address this problem, in this paper we introduce a novel unsupervised cross-modal contrastive hashing (DUCH) method for text-image retrieval in RS. To this end, the proposed DUCH is made up of two main modules: 1) feature extraction module, which extracts deep representations of two modalities; 2) hashing module that learns to generate cross-modal binary hash codes from the extracted representations. We introduce a novel multi-objective loss function including: i) contrastive objectives that enable similarity preservation in intra- and inter-modal similarities; ii) an adversarial objective that is enforced across two modalities for cross-modal representation consistency; and iii) binarization objectives for generating hash codes. Experimental results show that the proposed DUCH outperforms state-of-the-art methods. Our code is publicly available at https://git.tu-berlin.de/rsim/duch.
翻译:在本文件中,我们把注意力集中在跨模式文本图像检索上,对一种模式(如文本)的查询可以与另一种模式(如图像)的存档条目相匹配。在斯普斯卡共和国,大多数现有的跨模式文本图像检索系统需要大量的标签培训样本,也不允许快速和记忆节能的检索。这些问题限制了现有跨模式检索系统在RS大规模应用中的适用性。为了解决这一问题,我们在本文件中采用了一种新型的未经监督的跨模式文本图像检索方法(如文本),对一种模式(如图像)的查询可以与另一种模式(如图像)的存档条目相匹配。为此,拟议的DUCH由两个主要模块组成:1)特征提取模块,该模块可以提取两种方式的深度描述;2)用于学习生成跨模式双模式的存储代码,从提取跨模式/存储节能的代码。在提取的演示演示中,我们引入了一种新型的跨模式的跨模式反模式的反模式。我们引入了一种新版本的跨模式的版本的版本的版本的版本的版本的版本。我们引入了一种新的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本。