Remote-sensing (RS) Change Detection (CD) aims to detect "changes of interest" from co-registered bi-temporal images. The performance of existing deep supervised CD methods is attributed to the large amounts of annotated data used to train the networks. However, annotating large amounts of remote sensing images is labor-intensive and expensive, particularly with bi-temporal images, as it requires pixel-wise comparisons by a human expert. On the other hand, we often have access to unlimited unlabeled multi-temporal RS imagery thanks to ever-increasing earth observation programs. In this paper, we propose a simple yet effective way to leverage the information from unlabeled bi-temporal images to improve the performance of CD approaches. More specifically, we propose a semi-supervised CD model in which we formulate an unsupervised CD loss in addition to the supervised Cross-Entropy (CE) loss by constraining the output change probability map of a given unlabeled bi-temporal image pair to be consistent under the small random perturbations applied on the deep feature difference map that is obtained by subtracting their latent feature representations. Experiments conducted on two publicly available CD datasets show that the proposed semi-supervised CD method can reach closer to the performance of supervised CD even with access to as little as 10% of the annotated training data. Code available at https://github.com/wgcban/SemiCD.
翻译:远程遥感(RS) 变化检测(CD) 旨在检测共同注册双时图像的“兴趣变化” 。 现有受到严密监督的CD方法的绩效归功于大量用于培训网络的附加说明的数据。 然而,大量遥感图像的注释是劳动密集型和昂贵的,特别是双时图像,因为它需要由一位人类专家进行像素-角度的比较。 另一方面,由于地球观测程序不断增加,我们常常能够获取无限制的、无标记的多时空RS图像。在本文中,我们提出了一个简单而有效的方法来利用未经标记的双时空图像的信息来改进网络的绩效。更具体地说,我们建议采用半超光化的CD模型,在监督的十字- Entropy(CE)图像(CE)损失之外,我们制定一种不受监督的CD损失。通过限制给一个未标记的双时空图像配对的输出变化概率映射图,在地球观测程序不断增加的深处应用的小型随机插图中,甚至可以在深处利用未标记的双时光图像来利用信息来改进CD- CD- CD- simbalbalbalbal 。 将CD 演示的CD 演示的CD- 演示数据显示更接近的CD- 将CD- 显示更接近CD- CD- CD- 的CD- 将CD- 演示成更接近的CD- 的CD- 的CD- 演示的CD- 的CD- 的CD- 的CD- 的CD- 的CD- saltra