We study Hessian estimators for real-valued functions defined over an $n$-dimensional complete Riemannian manifold. We introduce new stochastic zeroth-order Hessian estimators using $O (1)$ function evaluations. We show that, for a smooth real-valued function $f$ with Lipschitz Hessian (with respect to the Rimannian metric), our estimator achieves a bias bound of order $ O \left( L_2 \delta + \gamma \delta^2 \right) $, where $ L_2 $ is the Lipschitz constant for the Hessian, $ \gamma $ depends on both the Levi-Civita connection and function $f$, and $\delta$ is the finite difference step size. To the best of our knowledge, our results provide the first bias bound for Hessian estimators that explicitly depends on the geometry of the underlying Riemannian manifold. Perhaps more importantly, our bias bound does not increase with dimension $n$. This improves best previously known bias bound for $O(1)$-evaluation Hessian estimators, which increases quadratically with $n$. We also study downstream computations based on our Hessian estimators. The supremacy of our method is evidenced by empirical evaluations.
翻译:我们研究海森天文估计值, 用于在瑞曼尼方块上界定真正价值的功能。 我们使用 $1 美元功能评估, 引入新的热血天文估计值零顺序。 我们显示, 光滑真实价值的函数, 利普施茨海森( 相对于里曼尼度量值), 我们的天文估计值在O left (L_ 2\ delta +\ gamma\ delta2\right) $ 上存在偏差。 在那里, 利普施茨常数为L_ 2 $ 利普施茨, 赫斯天文估计值为$\ gamma 美元 。 我们的天文估计值为赫斯天文的测算结果提供了第一个偏差, 明确取决于里曼方块的几何测值。 也许更重要的是, 我们的偏差约束值并不随着海珊方块值的常数而增加, 美元 。