Distributive laws are a standard way of combining two monads, providing a compositional approach for reasoning about computational effects in semantics. Situations where no such law exists can sometimes be handled by weakening the notion of distributive law, still recovering a composite monad. A celebrated result from Eugenia Cheng shows that combining $n$ monads is possible by iterating more distributive laws, provided they satisfy a coherence condition called the Yang-Baxter equation. Moreover, the order of composition does not matter, leading to a form of associativity. The main contribution of this paper is to generalise the associativity of iterated composition to weak distributive laws in the case of $n = 3$ monads. To this end, we use string-diagrammatic notation, which significantly helps make increasingly complex proofs more readable. We also provide examples of new weak distributive laws arising from iteration.
翻译:分配法是将两个寺院合并的标准方式,为计算语义效果的推理提供了一种构成方法,不存在这种法律的情况有时可以通过削弱分配法的概念来处理,这种法律仍在恢复一个复合的寺院。尤金妮娅·成的一项值得称道的结果表明,如果它们满足一个称为杨巴克斯特方程式的一致条件,那么将美元月经合起来是可能的,但前提是它们满足一个称为杨巴克斯特方程式的一致条件。此外,组成顺序并不重要,导致一种联系形式。本文的主要贡献是,在美元=3美元的寺庙中,将迭代制的构成与脆弱的分配法普遍联系起来。为此,我们使用字符串拼写符号,这大大有助于使日益复杂的证据更易于阅读。我们还提供了因循环而产生的新的薄弱分配法的例子。