Sensitivity analysis for the unconfoundedness assumption is a crucial component of observational studies. The marginal sensitivity model has become increasingly popular for this purpose due to its interpretability and mathematical properties. As the basis of $L^\infty$-sensitivity analysis, it assumes the logit difference between the observed and full data propensity scores is uniformly bounded. In this article, we introduce a new $L^2$-sensitivity analysis framework which is flexible, sharp and efficient. We allow the strength of unmeasured confounding to vary across units and only require it to be bounded marginally for partial identification. We derive analytical solutions to the optimization problems under our $L^2$-models, which can be used to obtain sharp bounds for the average treatment effect (ATE). We derive efficient influence functions and use them to develop efficient one-step estimators in both analyses. We show that multiplier bootstrap can be applied to construct simultaneous confidence bands for our ATE bounds. In a real-data study, we demonstrate that $L^2$-analysis relaxes the interpretation of $L^\infty$-analysis and provides a much more reliable calibration process using observed covariates. Finally, we provide an extension of our theoretical results to the conditional average treatment effect (CATE).


翻译:L^\infty 和 L^2 敏感度分析中的尖锐界限和半参数推断 翻译的摘要 对于未受干扰假设的敏感度分析是观察性研究的一个关键组成部分。由于其可解释性和数学性质,边际敏感度模型在此目的上变得越来越流行。作为 $L^\infty$-敏感度分析的基础,它假设观察数据和全数据的倾向得分的对数差异是均匀有界的。在本文中,我们引入了一种新的 $L^2$-敏感度分析框架,这种框架具有灵活性、尖锐性和高效性。我们允许未测混淆强度在单元之间变化,并且只需要在部分识别时在边际上受到限制。我们推导了我们的 $L^2$-模型下的优化问题的解析解,可用于获取平均处理效应 (ATE) 的尖锐界限。我们推导了高效的影响函数,并在两种分析中使用它们开发了高效的单步估计器。我们表明,倍增自举可以用于构建我们的 ATE 界限的同时置信带。在一个实际数据研究中,我们展示了 $L^2$-分析放松了 $L^\infty$-分析的解读,并使用观察到的协变量提供了一个更可靠的校准过程。最后,我们将我们的理论结果扩展到了条件平均处理效应 (CATE)。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【2022新书】机器学习中的统计建模:概念和应用,398页pdf
专知会员服务
136+阅读 · 2022年11月5日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关资讯
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员