The Discrete Fourier Transform (DFT) is essential for various applications ranging from signal processing to convolution and polynomial multiplication. The groundbreaking Fast Fourier Transform (FFT) algorithm reduces DFT time complexity from the naive O(n^2) to O(n log n), and recent works have sought further acceleration through parallel architectures such as GPUs. Unfortunately, accelerators such as GPUs cannot exploit their full computing capabilities as memory access becomes the bottleneck. Therefore, this paper accelerates the FFT algorithm using digital Processing-in-Memory (PIM) architectures that shift computation into the memory by exploiting physical devices capable of storage and logic (e.g., memristors). We propose an O(log n) in-memory FFT algorithm that can also be performed in parallel across multiple arrays for high-throughput batched execution, supporting both fixed-point and floating-point numbers. Through the convolution theorem, we extend this algorithm to O(log n) polynomial multiplication - a fundamental task for applications such as cryptography. We evaluate FourierPIM on a publicly-available cycle-accurate simulator that verifies both correctness and performance, and demonstrate 5-15x throughput and 4-13x energy improvement over the NVIDIA cuFFT library on state-of-the-art GPUs for FFT and polynomial multiplication.


翻译:---- 离散傅里叶变换 (DFT) 对于各种应用场景都至关重要,从信号处理到卷积和多项式乘法。开创性的快速傅里叶变换 (FFT) 算法将 DFT 的时间复杂度从朴素的 O(n^2) 降低到 O(n log n),而最近的一些工作则通过诸如 GPU 等并行架构来进一步加速。不幸的是,GPU 等加速器无法充分利用其全面的计算能力,因为访问内存会成为瓶颈。因此,本文通过利用数字化处理内存 (PIM) 架构来加速 FFT 算法,将计算推入内存,利用具有存储和逻辑能力 (例如 memristor) 的物理设备。我们提出了一种 O(log n) 的内存中 FFT 算法,可在多个数组之间并行执行以支持高吞吐量批处理,支持固定点和浮点数。通过卷积定理,我们将此算法扩展到 O(log n) 的多项式乘法——密码学等应用程序的基本任务。我们使用一个公开的周期精确的仿真器对 FourierPIM 进行评估,以验证正确性和性能,并展示了相对于最先进的 GPU 上的 NVIDIA cuFFT 库来说在 FFT 和多项式乘法上 5-15 倍的吞吐量和 4-13 倍的能量改进。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
69+阅读 · 2022年9月30日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
Python图像处理,366页pdf,Image Operators Image Processing in Python
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月21日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员