The problem of fairly allocating a set of indivisible items is a well-known challenge in the field of (computational) social choice. In this scenario, there is a fundamental incompatibility between notions of fairness (such as envy-freeness and proportionality) and economic efficiency (such as Pareto-optimality). However, in the real world, items are not always allocated once and for all, but often repeatedly. For example, the items may be recurring chores to distribute in a household. Motivated by this, we initiate the study of the repeated fair division of indivisible goods and chores and propose a formal model for this scenario. In this paper, we show that, if the number of repetitions is a multiple of the number of agents, we can always find (i) a sequence of allocations that is envy-free and complete (in polynomial time), and (ii) a sequence of allocations that is proportional and Pareto-optimal (in exponential time). On the other hand, we show that irrespective of the number of repetitions, an envy-free and Pareto-optimal sequence of allocations may not exist. For the case of two agents, we show that if the number of repetitions is even, it is always possible to find a sequence of allocations that is overall envy-free and Pareto-optimal. We then prove even stronger fairness guarantees, showing that every allocation in such a sequence satisfies some relaxation of envy-freeness.


翻译:在计算社交选择领域中,公平分配一组不可分物品是一个众所周知的挑战。在这种情况下,公平(如不嫉妒和比例)与经济效率(如帕累托效率)之间存在根本性的不兼容性。然而,在现实世界中,物品并不总是一次性分配完毕,而经常是重复分配。例如,这些物品可能是家庭分配的重复杂事。出于这个原因,我们开始研究不可分商品和杂事的重复公平分配,并提出了一个形式化模型来描述这种场景。本文证明,如果重复次数是代理人数的倍数,则我们可以总是找到(i)一个使嫉妒完全消除且完成的分配序列(在多项式时间内)和(ii)一个比例和帕累托优化的分配序列(在指数时间内)。 另一方面,本文表明,无论重复次数如何,嫉妒完全消除和帕累托优化的分配序列可能不存在。对于两个代理人的情况,我们证明,如果重复次数是偶数,则总是可以找到一个序列的分配是总体上消除嫉妒和帕累托最优的。然后,我们证明了更强的公平保证,表明此类序列中的每个分配都满足某种嫉妒宽松限制。

0
下载
关闭预览

相关内容

【剑桥大学博士论文】机器学习安全性,148页pdf
专知会员服务
42+阅读 · 2023年2月13日
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
【ICDM2022教程】多目标优化与推荐,173页ppt
专知会员服务
46+阅读 · 2022年12月24日
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
49+阅读 · 2021年11月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员