The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function. We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string $x \in \{0, 1\}^n$ given possibly non-standard oracle access to it. We apply this framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of $\Omega(n/\log^2 n)$ for each.
翻译:Boolean 函数的大致程度是与其相近的真实多元值的最低程度。 对于任何布尔函数,它的大致程度是其量子查询复杂性的下限, 并且一般地将量子通信提升为相关函数的下限。 我们引入了一个框架来证明某些甲骨文识别问题的近似较低程度, 目的是在其中找到一个隐藏的二进制字符串$x\in @ @%0, 1<unk> n$, 可能的话是非标准操作器访问它。 我们将这个框架应用到有命令的搜索和隐藏字符串问题上, 证明每个字符串的近近近近近度下限为$\ Omega(n/\log2 n) 。</s>