This paper introduces Associative Compression Networks (ACNs), a new framework for variational autoencoding with neural networks. The system differs from existing variational autoencoders (VAEs) in that the prior distribution used to model each code is conditioned on a similar code from the dataset. In compression terms this equates to sequentially transmitting the dataset using an ordering determined by proximity in latent space. Since the prior need only account for local, rather than global variations in the latent space, the coding cost is greatly reduced, leading to rich, informative codes. Crucially, the codes remain informative when powerful, autoregressive decoders are used, which we argue is fundamentally difficult with normal VAEs. Experimental results on MNIST, CIFAR-10, ImageNet and CelebA show that ACNs discover high-level latent features such as object class, writing style, pose and facial expression, which can be used to cluster and classify the data, as well as to generate diverse and convincing samples. We conclude that ACNs are a promising new direction for representation learning: one that steps away from IID modelling, and towards learning a structured description of the dataset as a whole.


翻译:本文介绍Associal自动编码网络(ACNs),这是一个针对神经网络的变异自动编码新框架,该系统与现有的变异自动编码系统不同,与现有的变异自动编码器不同,因为每个代码模型的先前分发以数据集的类似代码为条件。压缩术语相当于使用由隐蔽空间近距离决定的顺序顺序按顺序传送数据集。由于先前的需要只考虑到潜伏空间的本地差异,而不是全球差异,编码费用大大降低,导致内容丰富、信息化的代码。关键是,当使用强大、自动递增的解密器时,编码仍然具有信息性,而我们辩称,这与普通的VAEs基本难以做到。 MNIST、CIFAR-10、图像网和CelebA的实验结果显示,ACNs发现了高层次潜在特征,如对象类别、写作风格、面部和面部表达,这些特征可用于对数据进行分组和分类,以及生成多样和令人信服的样本。我们的结论是,ACNs are 是一个有希望的新学习方向:从IID建模和学习整个数据结构描述的步骤。

0
下载
关闭预览

相关内容

ACNS:Applied Cryptography and Network Security。 Explanation:应用密码学与网络安全。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/conf/acns/
专知会员服务
53+阅读 · 2019年12月22日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
15+阅读 · 2020年2月6日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2019年12月22日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员