For a Keller-Segel model for chemotaxis in two spatial dimensions we consider positivity preserving fully discrete schemes which where introduced by R. Strehl et all. (2010). We discretize space using piecewise linear finite elements and time by the backward Euler method. Under appropriate assumptions on the regularity of the exact solution, the spatial mesh and the time step parameter we show existence of the fully discrete solution and derive error bounds. We also present numerical experiments to illustrate the theoretical results.
翻译:对于两个空间维度的化工学Keller-Segel模型,我们认为,在R. Strehl et all. (2010年) 引进的完全离散的计划中,应保留积极性。我们使用后向的Euler 方法使用片断线性有限元素和时间将空间分离。根据对确切解决方案的规律性、空间网格和时间步骤参数的适当假设,我们展示了完全离散的解决方案的存在并得出误差界限。我们还提供了数字实验来说明理论结果。