We propose finite-time measures to compute the divergence, the curl and the velocity gradient tensor of the point particle velocity for two- and three-dimensional moving particle clouds. To this end, tessellation of the particle positions is applied to associate a volume to each particle. Considering then two subsequent time instants, the dynamics of the volume can be assessed. Determining the volume change of tessellation cells yields the divergence of the particle velocity and the rotation of the cells evaluates its curl. Thus the helicity of particle velocity can be likewise computed and swirling motion of particle clouds can be quantified. We propose a modified version of Voronoi tessellation and which overcomes some drawbacks of the classical Voronoi tessellation. First we assess the numerical accuracy for randomly distributed particles. We find strong Pearson correlation between the divergence computed with the the modified version, and the analytic value which confirms the validity of the method. Moreover the modified Voronoi-based method converges with first order in space and time is observed in two and three dimensions for randomly distributed particles, which is not the case for the classical Voronoi tessellation. Furthermore, we consider for advecting particles, random velocity fields with imposed power-law energy spectra, motivated by turbulence. We determine the number of particles necessary to guarantee a given precision. Finally, applications to fluid particles advected in three-dimensional fully developed isotropic turbulence show the utility of the approach for real world applications to quantify self-organization in particle clouds and their vortical or even swirling motion.


翻译:我们提议了用于计算二维和三维移动粒子云的点粒子速度差异、卷轴和速度梯度的定时度度振幅。 为此, 将粒子位置的变贝化应用到将体积与每个粒子联系起来。 考虑到随后的两个时间瞬间, 可以评估体积的动态。 确定星系变形的体积变化可以产生粒子速度的差异和细胞的旋转来评估其曲线。 因此, 粒子速度的超常性可以同样计算, 粒子云的旋转运动可以量化。 我们提议了Voronoioi 电流应用的修改版本, 并且克服了古典Voronooi 电流的倒退。 首先我们评估了随机分布粒子的数值精确性。 我们发现与修改版的偏差之间的强烈的皮尔逊相关性, 和证实该方法有效性的分析值。 此外, 以粒子速度速度速度的修改法方法与空间和时间的第一顺序相交汇, 观察到了随机分布粒子云云云云体的二维度运动的三维维度。, 以直流流流流流流流流流的精确度的精确度为我们最终决定了其轨道的精确度, 的精确度的精确度, 以直流到直流流流流流流到直流到直流流到直流到直流流流流体的轨道, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月9日
Arxiv
0+阅读 · 2023年2月7日
Arxiv
0+阅读 · 2023年2月7日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员