This paper proposes a novel kernel-based optimization scheme to handle tasks in the analysis, e.g., signal spectral estimation and single-channel source separation of 1D non-stationary oscillatory data. The key insight of our optimization scheme for reconstructing the time-frequency information is that when a nonparametric regression is applied on some input values, the output regressed points would lie near the oscillatory pattern of the oscillatory 1D signal only if these input values are a good approximation of the ground-truth phase function. In this work, Gaussian Process (GP) is chosen to conduct this nonparametric regression: the oscillatory pattern is encoded as the Pattern-inducing Points (PiPs) which act as the training data points in the GP regression; while the targeted phase function is fed in to compute the correlation kernels, acting as the testing input. Better approximated phase function generates more precise kernels, thus resulting in smaller optimization loss error when comparing the kernel-based regression output with the original signals. To the best of our knowledge, this is the first algorithm that can satisfactorily handle fully non-stationary oscillatory data, close and crossover frequencies, and general oscillatory patterns. Even in the example of a signal {produced by slow variation in the parameters of a trigonometric expansion}, we show that PiPs admits competitive or better performance in terms of accuracy and robustness than existing state-of-the-art algorithms.


翻译:本文提出一个新的内核优化方案, 用于处理分析中的任务, 例如, 信号光谱估计和单通道源分离 1D 非静止的动画数据。 我们重建时间频率信息的优化方案的关键洞察力是, 当对一些输入值应用非参数回归时, 输出回归点将处于一个不偏差的状态, 只有当这些输入值是地面图解阶段功能的良好近似值时, 这些输入值才接近于 OSC1D 信号 。 在这项工作中, 高斯进程( GP) 被选为进行这种非参数的非参数回归 : 星标模式被编码为模式指示点( PiPs), 作为某些输入值回归值的培训数据点时, 产出回归点回归点将处于接近的状态, 作为测试输入。 更接近的阶段函数生成更精确的内核内核内核, 从而在比较以内核内核回归值为基础的参数参数时, 导致最优化的损失错误 。 在最初的轨迹定结果中, 最精确的轨道 将显示我们最精确的轨道 的轨道 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员