Recent advances in neural rendering have shown great potential for reconstructing scenes from multiview images. However, accurately representing objects with glossy surfaces remains a challenge for existing methods. In this work, we introduce ENVIDR, a rendering and modeling framework for high-quality rendering and reconstruction of surfaces with challenging specular reflections. To achieve this, we first propose a novel neural renderer with decomposed rendering components to learn the interaction between surface and environment lighting. This renderer is trained using existing physically based renderers and is decoupled from actual scene representations. We then propose an SDF-based neural surface model that leverages this learned neural renderer to represent general scenes. Our model additionally synthesizes indirect illuminations caused by inter-reflections from shiny surfaces by marching surface-reflected rays. We demonstrate that our method outperforms state-of-art methods on challenging shiny scenes, providing high-quality rendering of specular reflections while also enabling material editing and scene relighting.
翻译:最近神经渲染的进步展示了使用多视图图像重构场景的巨大潜力。然而,对于具有光泽表面的对象进行精确表示仍然是现有方法面临的挑战。本工作中,我们介绍了ENVIDR,一个用于高质量渲染和重建具有挑战性的镜面反射表面的渲染和建模框架。为了实现这一点,我们首先提出了一种新颖的神经渲染器,其中包括分解渲染组件以学习表面和环境照明之间的相互作用。该渲染器使用现有的基于物理的渲染器进行训练,与实际场景表示分离。然后,我们提出了一种基于SDF的神经表面模型,利用这个学习到的神经渲染器来表示普通场景。我们的模型通过渲染表面反射光线来合成由闪亮表面引起的间接照明。我们展示了我们的方法在具有挑战性的闪亮场景中优于现有方法,提供了高质量的镜面反射渲染,并使材料编辑和场景重照成为可能。