Estimation of parameters in differential equation models can be achieved by applying learning algorithms to quantitative time-series data. However, sometimes it is only possible to measure qualitative changes of a system in response to a controlled condition. In dynamical systems theory, such change points are known as \textit{bifurcations} and lie on a function of the controlled condition called the \textit{bifurcation diagram}. In this work, we propose a gradient-based semi-supervised approach for inferring the parameters of differential equations that produce a user-specified bifurcation diagram. The cost function contains a supervised error term that is minimal when the model bifurcations match the specified targets and an unsupervised bifurcation measure which has gradients that push optimisers towards bifurcating parameter regimes. The gradients can be computed without the need to differentiate through the operations of the solver that was used to compute the diagram. We demonstrate parameter inference with minimal models which explore the space of saddle-node and pitchfork diagrams and the genetic toggle switch from synthetic biology. Furthermore, the cost landscape allows us to organise models in terms of topological and geometric equivalence.
翻译:通过将学习算法应用于量化的时间序列数据,可以对差异方程模型的参数进行估计。然而,有时,只有根据受控制的条件,才可能衡量系统的质量变化。在动态系统理论中,这种变化点被称为\textit{bifurcation},并取决于被控制条件的函数,称为\ textit{bifurcation 图表}。在这项工作中,我们提议一种基于梯度的半监督方法,用以推断产生用户指定的双形图的差别方程的参数。成本函数包含一个受监督的错误术语,当模型的双形与指定目标匹配时,该术语是最小的。在动态系统理论中,这些变化点被称为\ textitilit{bifurcation}, 并位于一个未受监督的双形测量测量度, 其梯度会将选择器推向两维系参数的系统。在计算梯度时, 无需通过用于计算图表的求解器的操作来区分。我们用最小的模型来显示参数的推断值, 以探索马鞍节点和阵形图的空间, 以及从合成生物学的遗传转换模型转换。此外, 地貌条件可以使我们得以进行测算。