在一个常见的机器学习问题中,使用对训练数据集估计的模型,根据观察到的特征预测未来的结果值。当测试数据和训练数据来自相同的分布时,许多学习算法被提出并证明是成功的。然而,对于给定的训练数据分布,性能最好的模型通常会利用特征之间微妙的统计关系,这使得它们在应用于分布与训练数据不同的测试数据时,可能更容易出现预测错误。对于学术研究和实际应用来说,如何开发能够稳定和稳健地转换数据的学习模型是至关重要的。

因果推理是指根据效果发生的条件得出因果关系的结论的过程,是一种强大的统计建模工具,用于解释和稳定学习。本教程侧重于因果推理和稳定学习,旨在从观察数据中探索因果知识,提高机器学习算法的可解释性和稳定性。首先,我们将介绍因果推论,并介绍一些最近的数据驱动方法,以估计因果效应从观测数据,特别是在高维设置。为了弥补因果推理和机器学习之间的差距,我们首先给出了稳定性和鲁棒性学习算法的定义,然后将介绍一些最近的稳定学习算法来提高预测的稳定性和可解释性。最后,我们将讨论稳定学习的应用和未来的发展方向,并提供稳定学习的基准。

http://kdd2020tutorial.thumedialab.com/

成为VIP会员查看完整内容
85

相关内容

因果推断是研究如何更加科学地识别变量间的因果关系。 客观事物普遍存在着内在的因果联系,人们只有弄清事物发展变化的前因后果,才能全面地、本质地认识事物。基干事物发展的这种规律,在论证观点时,有时就可以直接从事物本身的因果关系中进行推论,这就叫因果推断法
专知会员服务
169+阅读 · 2020年8月26日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图神经网络火了?谈下它的普适性与局限性
机器之心
21+阅读 · 2019年7月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度 | 从Boosting到Stacking,概览集成学习的方法与性能
深度学习世界
3+阅读 · 2017年8月28日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
6+阅读 · 2018年11月1日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关论文
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
6+阅读 · 2018年11月1日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年6月5日
微信扫码咨询专知VIP会员