We derive novel, fast, and parameter-robust preconditioned iterative methods for steady and time-dependent Navier--Stokes control problems. Our approach may be applied to time-dependent problems which are discretized using backward Euler or Crank--Nicolson, and is also a valuable candidate for Stokes control problems discretized using Crank--Nicolson. The key ingredients of the solver are a saddle-point type approximation for the linear systems, an inner iteration for the $(1,1)$-block accelerated by a preconditioner for convection--diffusion control, and an approximation to the Schur complement based on a potent commutator argument applied to an appropriate block matrix. A range of numerical experiments validate the effectiveness of our new approach.


翻译:我们为稳定且有时间依赖的纳维埃-斯托克斯控制问题开发了新颖、快速和参数-硬质的附加迭代方法。我们的方法可以适用于使用落后的欧拉或克兰克-尼科尔森来分解的与时间相关的问题,也是使用克兰克-尼科尔森来分解的斯托克斯控制问题的宝贵候选者。求解器的关键成分是线性系统的马鞍点近似值、通过对流-扩散控制的先决条件加速的(1,1,1)美元区块的内部迭代法,以及基于适用于适当的块状矩阵的强力搭接器论据而接近舒尔补充物的近似值。一系列数字实验证实了我们新办法的有效性。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
7+阅读 · 2018年11月5日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月4日
Arxiv
0+阅读 · 2021年10月1日
VIP会员
相关VIP内容
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
7+阅读 · 2018年11月5日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员