We derive novel, fast, and parameter-robust preconditioned iterative methods for steady and time-dependent Navier--Stokes control problems. Our approach may be applied to time-dependent problems which are discretized using backward Euler or Crank--Nicolson, and is also a valuable candidate for Stokes control problems discretized using Crank--Nicolson. The key ingredients of the solver are a saddle-point type approximation for the linear systems, an inner iteration for the $(1,1)$-block accelerated by a preconditioner for convection--diffusion control, and an approximation to the Schur complement based on a potent commutator argument applied to an appropriate block matrix. A range of numerical experiments validate the effectiveness of our new approach.
翻译:我们为稳定且有时间依赖的纳维埃-斯托克斯控制问题开发了新颖、快速和参数-硬质的附加迭代方法。我们的方法可以适用于使用落后的欧拉或克兰克-尼科尔森来分解的与时间相关的问题,也是使用克兰克-尼科尔森来分解的斯托克斯控制问题的宝贵候选者。求解器的关键成分是线性系统的马鞍点近似值、通过对流-扩散控制的先决条件加速的(1,1,1)美元区块的内部迭代法,以及基于适用于适当的块状矩阵的强力搭接器论据而接近舒尔补充物的近似值。一系列数字实验证实了我们新办法的有效性。