A tree search algorithm called successive cancellation ordered search (SCOS) is proposed for $\boldsymbol{G}_N$-coset codes that implements maximum-likelihood (ML) decoding with an adaptive complexity for transmission over binary-input AWGN channels. Unlike bit-flip decoders, no outer code is needed to terminate decoding; therefore, SCOS also applies to $\boldsymbol{G}_N$-coset codes modified with dynamic frozen bits. The average complexity is close to that of successive cancellation (SC) decoding at practical frame error rates (FERs) for codes with wide ranges of rate and lengths up to $512$ bits, which perform within $0.25$ dB or less from the random coding union bound and outperform Reed--Muller codes under ML decoding by up to $0.5$ dB. Simulations illustrate simultaneous gains for SCOS over SC-Fano, SC stack (SCS) and SC list (SCL) decoding in FER and the average complexity at various SNR regimes. SCOS is further extended by forcing it to look for candidates satisfying a threshold on the likelihood, thereby outperforming basic SCOS under complexity constraints. The modified SCOS enables strong error-detection capability without the need for an outer code. In particular, the $(128, 64)$ PAC code under modified SCOS provides gains in overall and undetected FER compared to CRC-aided polar codes under SCL/dynamic SC flip decoding at high SNR.
翻译:树搜索算法叫连续取消排序搜索( SCOS) 。 平均复杂程度接近于 $\ boldsymbol{ G ⁇ N$-cose 代码的连续取消( SC) 以实际框架误差率解码( FERs), 该代码使用最大类似值( ML) 解码, 且在二进制的AWGN 频道上传输具有适应性复杂度。 不同于 Bit- 翻转解解解码器, 终止解码不需要外部代码; 因此, SCOS 也适用 $\ boldsysymbol{ G ⁇ N$- n$- cet 代码, 并使用动态冷冻位元件修改的代码。 平均复杂程度接近于 最大范围和长度为512美元比特的代码解码( FER( FER) ) 的连续解码( FER) 解码( FER), 和 SNRC 系统中的平均复杂度( 512) 位的代码, 该值在随机调算中, SCOSOCSBSBSL 使得SBS 的精化系统在一定的精密能力要求下, 进一步修正的精化, 使SL 更高精细化标准要求 进一步要求 进一步在SLL 进一步在SL 下, 。