项目名称: 时滞参数变化系统稳定、控制与滤波研究

项目编号: No.61473151

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 张保勇

作者单位: 南京理工大学

项目金额: 84万元

中文摘要: 参数变化系统是一类与实时可测的时变参数相关的重要动态系统,在非线性控制系统设计以及飞行控制、能源系统等实际工程领域具有广泛的应用。本项目拟针对带有离散和分布参数变化时滞的连续/离散时间的参数变化系统,包括线性参数变化系统、李普希兹非线性参数变化系统和输入/输出饱和非线性参数变化系统,深入研究稳定性分析、增益调度控制和滤波等问题,基于Lyapunov-Krasovskii稳定性定理,采用参数相关Lyapunov-Krasovskii泛函,借助于自由权矩阵和积分不等式等技术,推导系统渐近稳定、指数稳定、状态反馈控制律、动态输出反馈控制律以及滤波器的分析与设计条件,提供期望控制律和滤波器的设计算法,提供数值算例或应用实例,检验分析与设计结果的先进性和有效性。本项目旨在形成系统的理论研究成果,改进和发展参数变化系统的增益调度控制理论。

中文关键词: 时滞系统;稳定性分析;鲁棒控制;时滞相关;线性矩阵不等式

英文摘要: Parameter-varying systems are a class of important dynamic systems depending on a set of time-varying parameters that can be measured in real-time. Such systems have extensive applications in nonlinear control system design and engineering areas such as flight control and energy systems. This project will deeply study the problems of stability analysis, gain-scheduled control and filtering for continuous/discrete-time parameter-varying systems with discrete and distributed parameter-varying delays. The considered systems include linear parameter-varying systems, Lipschitz nonlinear parameter-varying systems and input/output saturation nonlinear parameter-varying systems. Based on the Lyapunov-Krasovskii stability theorem, analysis and design conditions for asymptotic stability, exponential stability, state-feedback controllers, dynamic output-feedback controllers and filters will be derived by employing parameter-dependent Lyapunov-Krasovskii functionals together with the application of free-weighting matrix and integral inequality techniques, and design algorithms for desired controllers and filters will be also proposed. Numerical examples or real-word examples will be provided to check the advantage and effectiveness of the obtained analysis and design results. This project aims to obtain a systematic class of theoretical results and to improve the gain-scheduled control theory of parameter-varying systems.

英文关键词: Time-delay systems;Stability analysis;Robust control;Delay dependence;Linear matrix inequality

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
专知会员服务
27+阅读 · 2021年9月17日
专知会员服务
32+阅读 · 2021年9月14日
【NeurIPS 2020】深度学习的不确定性估计和鲁棒性
专知会员服务
49+阅读 · 2020年12月8日
专知会员服务
34+阅读 · 2020年11月26日
专知会员服务
42+阅读 · 2020年7月29日
手机各种参数里你最看重什么?
ZEALER订阅号
0+阅读 · 2022年4月16日
稳定性与高可用保障的工作思路
阿里技术
0+阅读 · 2022年2月24日
深度学习中的“不确定性基线”
TensorFlow
5+阅读 · 2021年12月7日
【夯实基础】卡尔曼滤波
极市平台
1+阅读 · 2021年11月3日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
深度 | 变分自编码器VAE面临的挑战与发展方向
机器之心
16+阅读 · 2018年3月21日
前沿 | 简述脉冲神经网络SNN:下一代神经网络
机器之心
36+阅读 · 2018年1月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年5月2日
Arxiv
0+阅读 · 2022年4月29日
Arxiv
0+阅读 · 2022年4月29日
Arxiv
28+阅读 · 2021年9月26日
Arxiv
38+阅读 · 2021年8月31日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
小贴士
相关VIP内容
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
专知会员服务
27+阅读 · 2021年9月17日
专知会员服务
32+阅读 · 2021年9月14日
【NeurIPS 2020】深度学习的不确定性估计和鲁棒性
专知会员服务
49+阅读 · 2020年12月8日
专知会员服务
34+阅读 · 2020年11月26日
专知会员服务
42+阅读 · 2020年7月29日
相关资讯
手机各种参数里你最看重什么?
ZEALER订阅号
0+阅读 · 2022年4月16日
稳定性与高可用保障的工作思路
阿里技术
0+阅读 · 2022年2月24日
深度学习中的“不确定性基线”
TensorFlow
5+阅读 · 2021年12月7日
【夯实基础】卡尔曼滤波
极市平台
1+阅读 · 2021年11月3日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
深度 | 变分自编码器VAE面临的挑战与发展方向
机器之心
16+阅读 · 2018年3月21日
前沿 | 简述脉冲神经网络SNN:下一代神经网络
机器之心
36+阅读 · 2018年1月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年5月2日
Arxiv
0+阅读 · 2022年4月29日
Arxiv
0+阅读 · 2022年4月29日
Arxiv
28+阅读 · 2021年9月26日
Arxiv
38+阅读 · 2021年8月31日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
微信扫码咨询专知VIP会员