In the average-case $k$-SUM problem, given $r$ integers chosen uniformly at random from $\{0,\ldots,M-1\}$, the objective is to find a set of $k$ numbers that sum to $0$ modulo $M$ (this set is called a solution). In the related $k$-XOR problem, given $k$ uniformly random Boolean vectors of length $\log{M}$, the objective is to find a set of $k$ of them whose bitwise-XOR is the all-zero vector. Both of these problems have widespread applications in the study of fine-grained complexity and cryptanalysis. The feasibility and complexity of these problems depends on the relative values of $k$, $r$, and $M$. The dense regime of $M \leq r^k$, where solutions exist with high probability, is quite well-understood and we have several non-trivial algorithms and hardness conjectures here. Much less is known about the sparse regime of $M\gg r^k$, where solutions are unlikely to exist. The best answers we have for many fundamental questions here are limited to whatever carries over from the dense or worst-case settings. We study the planted $k$-SUM and $k$-XOR problems in the sparse regime. In these problems, a random solution is planted in a randomly generated instance and has to be recovered. As $M$ increases past $r^k$, these planted solutions tend to be the only solutions with increasing probability, potentially becoming easier to find. We show several results about the complexity and applications of these problems, including conditional lower bounds for $r^k \leq M \leq r^{2k}$, a search-to-decision reduction for $M > r^k$, hardness amplification for $M \geq r^k$, a construction of PKE for some $M \leq 2^{\mathrm{polylog}(r)}$, and non-trivial algorithms for any $M \geq 2^{r^2}$.


翻译:在平均情况下,给定从$\{0,\ldots,M-1\}$中均匀选择的$r$个整数,目标是找到一组$k$个数字,它们在模$M$下的和为$0$(这个集合被称为解)。在相关的$k$-XOR问题中,给定$k$个长度为$\log {M}$的均匀随机布尔向量,目标是找到$k$个这些向量的按位异或是全零向量。这两个问题在精细化复杂性和密码分析的研究中有广泛的应用。这些问题的可行性和复杂度取决于$k$,$r$和$M$的相对值。$M \leq r^k$的密集区域,其中解几乎有确定的概率,是相当清楚的,我们有几种非平凡的算法和硬度猜想。关于$M\gg r^k$的稀疏区域,其中解的可能性很小,我们知道的许多基本问题的最佳答案仅限于来自密集或最坏情况的部分。我们研究了稀疏区域中的填充$k$-SUM和$k$-XOR问题。在这些问题中,在随机生成的实例中种植了一个随机解并且必须恢复它。随着$M$超过$r^k$,这些种植的解往往是唯一的解,并具有越来越大的概率成为更容易找到的解。我们展示了这些问题的复杂性和应用的多个结果,包括$r^k\leq M\leq r^{2k}$的条件下界,$M>r^k$ 的搜索到决策缩减,$M\geq r^k$的硬度扩展,一些$M \leq 2^{\mathrm {polylog}(r)}$的PKE构造以及任何$M \geq 2^{r ^ 2}$的非平凡算法。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员