The K-receiver wiretap channel is a channel model where a transmitter broadcasts K independent messages to K intended receivers while keeping them secret from an eavesdropper. The capacity region of the K-receiver multiple-input multiple-output (MIMO) wiretap channel has been characterized by using dirty-paper coding and stochastic encoding. However, K factorial encoding orders may need to be enumerated to evaluate the capacity region, which makes the problem intractable. In addition, even though the capacity region is known, the optimal signaling to achieve the capacity region is unknown. In this paper, we determine one optimal encoding order to achieve every point on the capacity region, and thus reduce the encoding complexity K factorial times. We prove that the optimal decoding order for the K-receiver MIMO wiretap channel is the same as that for the MIMO broadcast channel without secrecy. To be specific, the descending weight ordering in the weighted sum-rate (WSR) maximization problem determines the optimal encoding order. Next, to reach the border of the secrecy capacity region, we form a WSR maximization problem and apply the block successive maximization method to solve this nonconvex problem and find the input covariance matrices corresponding to each message. Numerical results are used to verify the optimality of the encoding order and to demonstrate the efficacy of the proposed signaling design.


翻译:K-接收器窃听信道是一种信道模型,其中发射器向K个意图接收者广播K个独立的消息,同时使窃听者对这些消息保密。使用脏纸编码和随机编码已经对K-接收器多输入多输出(MIMO)窃听信道的容量区域进行了特征化。然而,为了评估容量区域,可能需要枚举K阶乘编码顺序,这使得问题不可解。此外,即使已知容量区域,实现容量区域的最优信号设计也是未知的。在本文中,我们确定了一种最优编码顺序以实现容量区域上的每个点,从而将编码复杂度降低了K阶乘倍。我们证明了K-接收器MIMO窃听信道的最优解码顺序与无保密性的MIMO广播信道相同。具体而言,加权和速率(WSR)最大化问题中的降序加权顺序确定了最优编码顺序。接下来,为了达到保密容量区域的边界,我们形成一个WSR最大化问题,并应用块逐步最大化方法来解决这个非凸问题,并找到对应于每个消息的输入协方差矩阵。数值结果被用来验证编码顺序的最优性,并展示所提出信号设计的有效性。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员