Reed-Muller codes were introduced in 1954, with a simple explicit construction based on polynomial evaluations, and have long been conjectured to achieve Shannon capacity on symmetric channels. Major progress was made towards a proof over the last decades; using combinatorial weight enumerator bounds, a breakthrough on the erasure channel from sharp thresholds, hypercontractivity arguments, and polarization theory. Another major progress recently established that the bit error probability vanishes slowly below capacity. However, when channels allow for errors, the results of Bourgain-Kalai do not apply for converting a vanishing bit to a vanishing block error probability, neither do the known weight enumerator bounds. The conjecture that RM codes achieve Shannon capacity on symmetric channels, with high probability of recovering the codewords, has thus remained open. This paper closes the conjecture's proof. It uses a new recursive boosting framework, which aggregates the decoding of codeword restrictions on `subspace-sunflowers', handling their dependencies via an $L_p$ Boolean Fourier analysis, and using a list-decoding argument with a weight enumerator bound from Sberlo-Shpilka. The proof does not require a vanishing bit error probability for the base case, but only a non-trivial probability, obtained here for general symmetric codes. This gives in particular a shortened and tightened argument for the vanishing bit error probability result of Reeves-Pfister, and with prior works, it implies the strong wire-tap secrecy of RM codes on pure-state classical-quantum channels.


翻译:Reed-Muller码是在1954年引入的,基于多项式求值的简单明了的显式构建。长期以来,人们一直猜测它们可以在对称信道上达到Shannon容量。近几十年来,已经取得了重大进展,如利用组合重量枚举器界限、研究纠删通道的尖锐阈值、超收缩性和极化理论。最近,又有一个重大进展,证明了当通道允许出错时,比特错误概率会在接近容量时逐渐变小。然而,对于将逐渐变小的比特错误概率转化为逐渐变小的块错误概率,Bourgain-Kalai的结果并不适用,也不适用于已知的重量枚举器界限。因此,RM码在对称通道上可以高概率恢复码字的猜想仍然未能解决。本论文给出了该猜想的证明。它采用了一种新的递归增强框架,通过对“子空间向日葵”上的码字约束进行解码聚合,利用$L_p$布尔傅里叶分析处理其依赖关系,并使用Sberlo-Shpilka的重量枚举器界限和列表解码方法。此证明并不需要基本情况下比特错误概率趋近于零,而只需要一个非平凡的概率,这在一般的对称码字中获得。这尤其意味着在纯态经典-量子信道上,RM码的强无线窃听保密性得到了证明,同时缩短和紧化了Reeves-Pfister的比特错误概率结果的论证。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
专知会员服务
85+阅读 · 2020年12月5日
Python图像处理,366页pdf,Image Operators Image Processing in Python
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月22日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员