We present NeRF-SR, a solution for high-resolution (HR) novel view synthesis with mostly low-resolution (LR) inputs. Our method is built upon Neural Radiance Fields (NeRF) that predicts per-point density and color with a multi-layer perceptron. While producing images at arbitrary scales, NeRF struggles with resolutions that go beyond observed images. Our key insight is that NeRF benefits from 3D consistency, which means an observed pixel absorbs information from nearby views. We first exploit it by a supersampling strategy that shoots multiple rays at each image pixel, which further enforces multi-view constraint at a sub-pixel level. Then, we show that NeRF-SR can further boost the performance of supersampling by a refinement network that leverages the estimated depth at hand to hallucinate details from related patches on only one HR reference image. Experiment results demonstrate that NeRF-SR generates high-quality results for novel view synthesis at HR on both synthetic and real-world datasets without any external information.
翻译:我们提出NeRF-SR,这是高分辨率(HR)新观点合成的一种解决方案,大部分是低分辨率(LR)输入。我们的方法是建立在神经辐射场上,用多层光谱预测每点密度和颜色。在以任意比例制成图像时,NERF与超出观察图像的分辨率搏斗。我们的关键见解是,NERF从3D一致性中受益,这意味着观察到的像素吸收了附近视图的信息。我们首先利用超抽样战略,对每个图像像素进行多光谱射击,进一步在次像素水平上实施多视限制。然后,我们表明NERF-SR可以通过一个精细的网络进一步提高超级取样的性能,该网络利用估计的深度,从仅一个HR参考图像上的有关补丁获得的致幻细节。实验结果表明,NRF-SR产生高质量的结果,用于在没有外部信息的情况下在HR合成和真实世界数据集上进行新的视觉合成。