Reliable point cloud data is essential for perception tasks \textit{e.g.} in robotics and autonomous driving applications. Adverse weather causes a specific type of noise to light detection and ranging (LiDAR) sensor data, which degrades the quality of the point clouds significantly. To address this issue, this letter presents a novel point cloud adverse weather denoising deep learning algorithm (4DenoiseNet). Our algorithm takes advantage of the time dimension unlike deep learning adverse weather denoising methods in the literature. It performs about 10\% better in terms of intersection over union metric compared to the previous work and is more computationally efficient. These results are achieved on our novel SnowyKITTI dataset, which has over 40000 adverse weather annotated point clouds. Moreover, strong qualitative results on the Canadian Adverse Driving Conditions dataset indicate good generalizability to domain shifts and to different sensor intrinsics.
翻译:可靠的云层数据对于机器人和自主驾驶应用中的感知任务 \ textit{ 例如} 至关重要。 不利的天气给光探测和测距(LiDAR)传感器数据造成特定类型的噪音,使点云质量显著下降。 为了解决这个问题,本信提出了一个新颖的点云, 阴云负面天气淡化了深层学习算法( 4DenoiseNet ) 。 我们的算法利用了时间维度, 不同于文献中深刻学习的恶劣天气分解方法。 与以往的工作相比, 相对于联盟指标的交叉性而言,它比以往的工作要好10 ⁇ , 并且更具有计算效率。 这些结果来自我们的新颖的SnowyKITTI数据集, 该数据集有4万多个附加点云的不利天气。 此外, 加拿大的偏向性钻探条件数据集的质量结果显示, 区域移动和不同传感器内在的通用性良好。