In this paper, we tackle the problem of active robotic 3D reconstruction of an object. In particular, we study how a mobile robot with an arm-held camera can select a favorable number of views to recover an object's 3D shape efficiently. Contrary to the existing solution to this problem, we leverage the popular neural radiance fields-based object representation, which has recently shown impressive results for various computer vision tasks. However, it is not straightforward to directly reason about an object's explicit 3D geometric details using such a representation, making the next-best-view selection problem for dense 3D reconstruction challenging. This paper introduces a ray-based volumetric uncertainty estimator, which computes the entropy of the weight distribution of the color samples along each ray of the object's implicit neural representation. We show that it is possible to infer the uncertainty of the underlying 3D geometry given a novel view with the proposed estimator. We then present a next-best-view selection policy guided by the ray-based volumetric uncertainty in neural radiance fields-based representations. Encouraging experimental results on synthetic and real-world data suggest that the approach presented in this paper can enable a new research direction of using an implicit 3D object representation for the next-best-view problem in robot vision applications, distinguishing our approach from the existing approaches that rely on explicit 3D geometric modeling.
翻译:在本文中, 我们处理一个物体的动态机器人 3D 重建问题。 特别是, 我们研究一个拥有一个手持相机的移动机器人如何能够选择一些有利的视图, 以有效恢复一个物体的 3D 形状。 与目前解决这一问题的方法相反, 我们利用广受欢迎的神经光亮地基物体的表达方式, 它最近为各种计算机视觉任务展示了令人印象深刻的结果。 但是, 使用这样的表达方式直接解释一个物体的3D 直径的3D 几何细节并不简单, 从而对密集的 3D 重建的下一个最佳选择问题提出挑战。 本文引入了一个基于光线基体积的量不确定性估计器, 以光谱为基础的数量不确定性估计器, 来计算每个天体暗线上颜色样本重量分布的精度分布。 我们证明, 3D 基本几何测量方法的不确定性是可能的, 与提议的估测仪的新观点。 我们然后提出下一个最佳选择政策, 由基于光谱的 3D 实地表达方式的量不确定度模型 。 鼓励从每个物体的深度分析方法的实验性结果, 显示我们当前 3 的精确的3 选择的精确的 的模型, 方法可以显示现有的精确的精确的地理图 的模型, 的模型, 使现有选择的精确的精确的模型 的模型的模型的模型 使我们的现有的精确的精确的 的 的定位法 的精确的定位法 。