Forecasting the future states of surrounding traffic participants is a crucial capability for autonomous vehicles. The recently proposed occupancy flow field prediction introduces a scalable and effective representation to jointly predict surrounding agents' future motions in a scene. However, the challenging part is to model the underlying social interactions among traffic agents and the relations between occupancy and flow. Therefore, this paper proposes a novel Multi-modal Hierarchical Transformer network that fuses the vectorized (agent motion) and visual (scene flow, map, and occupancy) modalities and jointly predicts the flow and occupancy of the scene. Specifically, visual and vector features from sensory data are encoded through a multi-stage Transformer module and then a late-fusion Transformer module with temporal pixel-wise attention. Importantly, a flow-guided multi-head self-attention (FG-MSA) module is designed to better aggregate the information on occupancy and flow and model the mathematical relations between them. The proposed method is comprehensively validated on the Waymo Open Motion Dataset and compared against several state-of-the-art models. The results reveal that our model with much more compact architecture and data inputs than other methods can achieve comparable performance. We also demonstrate the effectiveness of incorporating vectorized agent motion features and the proposed FG-MSA module. Compared to the ablated model without the FG-MSA module, which won 2nd place in the 2022 Waymo Occupancy and Flow Prediction Challenge, the current model shows better separability for flow and occupancy and further performance improvements.


翻译:预测交通参与者的未来状况是自主车辆的关键能力。最近提出的使用流量预测引入了可缩放和有效的代表性,以共同预测代理商未来在现场的行动。然而,挑战部分是模拟交通代理商之间的基本社会互动以及占用与流动之间的关系。因此,本文件提出一个新的多模式分级变换网络,将矢量化(代理运动)和视觉(空间流动、地图和占用)模式结合起来,并共同预测现场的流量和占用情况。具体地说,感官数据的视觉和矢量特征通过多阶段的变迁器模块编码,然后是带有时间像素注意的延迟融合变异器模块。重要的是,流动引导多头自留(FG-MSA)模块旨在更好地汇总关于使用量和流动的信息,并模拟它们之间的数学关系。拟议方法在Waymo Open Motional Dataset和与若干州级模型相比较得到全面验证。结果显示,我们模型的模型,以更紧凑易变现的流程结构及滚动模式显示,我们提出的FMISMSMLA模型可以更能化。

1
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月26日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员