Humans learn to recognize and manipulate new objects in lifelong settings without forgetting the previously gained knowledge under non-stationary and sequential conditions. In autonomous systems, the agents also need to mitigate similar behavior to continually learn the new object categories and adapt to new environments. In most conventional deep neural networks, this is not possible due to the problem of catastrophic forgetting, where the newly gained knowledge overwrites existing representations. Furthermore, most state-of-the-art models excel either in recognizing the objects or in grasp prediction, while both tasks use visual input. The combined architecture to tackle both tasks is very limited. In this paper, we proposed a hybrid model architecture consists of a dynamically growing dual-memory recurrent neural network (GDM) and an autoencoder to tackle object recognition and grasping simultaneously. The autoencoder network is responsible to extract a compact representation for a given object, which serves as input for the GDM learning, and is responsible to predict pixel-wise antipodal grasp configurations. The GDM part is designed to recognize the object in both instances and categories levels. We address the problem of catastrophic forgetting using the intrinsic memory replay, where the episodic memory periodically replays the neural activation trajectories in the absence of external sensory information. To extensively evaluate the proposed model in a lifelong setting, we generate a synthetic dataset due to lack of sequential 3D objects dataset. Experiment results demonstrated that the proposed model can learn both object representation and grasping simultaneously in continual learning scenarios.


翻译:人类学会在终身环境中认识和操控新对象,同时不忘记在非静止和连续条件下获得的知识。 在自主系统中, 代理器还需要减少类似的行为, 以不断学习新对象类别并适应新环境。 在大多数传统的深神经网络中, 无法做到这一点, 原因是灾难性的忘记问题, 新获得的知识在现有的表达形式中横跨了时间。 此外, 大多数最先进的模型在认识对象或掌握预测方面都很出色, 而两个任务都使用视觉输入。 用于处理这两个任务的综合结构非常有限。 在本文中, 我们提议了一个混合的物体模型结构, 包括动态增长的双模重复的经常神经网络( GDM) 和一个自动编码器, 以同时处理物体识别和掌握新环境。 自动编码网络负责为某个特定对象提取一个缩略缩缩图, 作为GDM学习的投入, 并负责预测比ixel- windal 模型的拟议理解配置配置。 GDMDM 部分旨在识别两个级别的对象。 在本文中, 我们用内含内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存数据, 重新排序内存数据学习中, 。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月15日
Polarity Loss for Zero-shot Object Detection
Arxiv
3+阅读 · 2018年11月22日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员